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Abstract
Type-preserving compilers translate well-typed source code, such
as Java or C#, into verifiable target code, such as typed assembly
language or proof-carrying code. This paper presents the imple-
mentation of type-preserving compilation in a complex, large-scale
optimizing compiler. Compared to prior work, this implementation
supports extensive optimizations, and it verifies a large portion of
the interface between the compiler and the runtime system. This
paper demonstrates the practicality of type-preserving compilation
in complex optimizing compilers: the generated typed assembly
language is only 2.3% slower than the base compiler’s generated
untyped assembly language, and the type-preserving compiler is
82.8% slower than the base compiler.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features—Classes and objects

General Terms Verification

Keywords Type-preserving compilation, object-oriented compil-
ers

1. Introduction
Because of compiler bugs, compilers may not preserve safety prop-
erties of source-level programs through the compilation process.
Over the last decade, many researchers have proposed techniques
for removing the compiler from the trusted computing base by en-
suring that the output of the compiler has the same safety properties
as the input. Necula and Lee proposed Proof-Carrying Code (PCC),
in which low-level code is accompanied by a safety proof that can
be verified efficiently [12]. Morrisettet al. developed Typed As-
sembly Language (TAL), in which the compiler produces type-
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annotated assembly code; here, the soundness of the TAL type sys-
tem guarantees that a well-typed TAL program is both type-safe
and memory-safe [11]. Leroy built a certified compiler with a for-
mal proof that the compilation preserves the semantics of source
programs [8]. However, none of these compilers was a large-scale
optimizing compiler that is designed for use in real-world software
development. Such compilers may be orders of magnitude larger in
size than research prototypes because of their support for advanced
language features as well as their aggressive optimization.

This paper presents the implementation of type-preserving com-
pilation in a large-scale optimizing compiler of approximately
200,000 lines. By type-preserving compilation, we mean that the
compiler preserves types through each intermediate representation,
from source code to assembly code, allowing a lightweight verifier
to check the safety of the generated assembly code without trusting
the compiler itself. Our compiler is about an order of magnitude
larger than previously published type-preserving compilers,1 and
it is used by about 30 developers on a daily basis. Although the
compiler was originally implemented with a typed intermediate
representation, these types were previously discarded prior to in-
struction selection and register allocation. With our enhancements,
these types are preserved down to the assembly code, where they
can be checked by a standalone verifier.

The source language of the compiler is Microsoft Common In-
termediate Language (CIL) [6]. We chose a compiler for an object-
oriented language because object-oriented languages such as Java,
C#, and C++ are among the most popular programming languages
for industrial software development. For our medium-level and
low-level type system, we chose to implement LILC (Low-level
Intermediate Language with Classes) [2] and SST (Simple Stack
Types) [13] because they are sound and have decidable type check-
ing. In addition, these type systems are expressive enough to sup-
port type-safeimplementations of language features such as dy-
namic dispatch and reference parameters.

Our work makes the following contributions:

1. We implemented the LILC and SST type systems in an exist-
ing optimizing compiler at reasonable cost. Although these type
systems were published previously, they had not been imple-
mented or tested in a practical setting. Our compiler uses ap-
proximately 40 low-level optimizations, and with our changes

1 SpecialJ has about 33k lines for the compiler and 25k for the VCGen and
the checker [4]. The TALx86 compiler has about 18k lines [7]. The LTAL
compiler has about 50k for the typed backend [3].



to the compiler, it can preserve types through almost all of these
optimizations. For the benchmarks we measured (ranging from
4MB to 20MB in executable size), the generated TAL code is
0.95-1.09 times slower than the base compiler’s generated code,
with a geometric mean of 1.02. The TAL compiler is 0.99-17.12
times slower than the base compiler, with a geometric mean of
1.83. The TAL checking time is 1.61%-18.78% of the compi-
lation time, with a geometric mean of 5.59%. The TAL size
is 1.69-2.52 times larger than the x86 code in terms of object
file size, with a geometric mean of 2.05. We achieved this re-
sult by modifying approximately 10% of the existing compiler
code (19,000 out of 200,000 lines) and by adding 12,000 lines
of code for TAL definition and verification.

2. The TAL compiler generates explicit proofs about integer val-
ues, and the TAL checker verifies these proofs. In particular,
the compiler generates proofs that array indices are within ar-
ray bounds, even for cases where the compiler’s optimizations
eliminate run-time bounds checks. The compiler generates the
necessary loop invariants and proofs just before converting to
the back-end intermediate representation, and it preserves the
invariants and proofs through the back-end phases.

3. The TAL checker verifies a large portion of the interface be-
tween the compiler and the runtime system. The current system
trusts the implementation of the runtime system, including the
garbage collector, but it verifies most of the object layout and
garbage collection information that is generated by the compiler
for use by the runtime system.

We believe that type-preserving compilation is a practical way
to verify the output of large-scale optimizing compilers. Types
are a concise way to represent data properties, and they impose
few constraints on optimizations. Because many existing compilers
already use types and type checking internally, it is natural to
extend these compilers to preserve types at a low level.

These benefits give type-preserving compilation a number of
advantages over using a certified compiler, where the compiler it-
self is proven correct once and for all. Whereas existing optimizing
compilers can be extended to preserve types in a natural way, it is
not obvious whether we can certify a large-scale optimizing com-
piler. For example, Leroy’s work [8] showed that well-understood
transformations such as layout of stack frame are difficult to prove
correct, and a production compiler will have many such analyses
and transformations. Furthermore, a realistic compiler is under con-
stant change, which requires the compiler to be re-proven after each
change.

The rest of the paper is organized as follows. Section 2 pro-
vides background information regarding the base compiler and our
type systems. Section 3 presents our implementation of the type-
preserving compiler. Section 4 discusses our techniques for veri-
fying array bounds accesses, Section 5 presents our approach to
verifying interaction with the garbage collector, and Section 6 dis-
cusses our performance results. Section 7 discusses related work,
and Section 8 concludes.

2. Background
2.1 The Base Compiler

The base of our implementation is Bartok, which allows the use of
managed languages like C# for general-purpose programming. The
compiler has about 200,000 lines of code, mostly written in C#, and
is fully self-hosting.

Bartok can compile each binary module individually or it can
compile them all as a whole program with interprocedural opti-
mization. We use separate compilation mode to separate user pro-
grams from the libraries that we currently do not verify.

object f ile
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Figure 1. Architecture of Bartok

Performance of Bartok’s generated code is comparable to their
performance under the Microsoft Common Language Runtime
(CLR). According to the benchmarks tested, programs compiled
by Bartok are 0.94 to 4.13 times faster than the CLR versions, with
a geometric mean of 1.66.

The architecture of Bartok is shown in Figure 1. Bartok trans-
lates programs written in CIL, which is an intermediate represen-
tation for C# and other languages, into native x86 code, through
three intermediate representations: High-level IR (HIR), Medium-
level IR (MIR), and Low-level IR (LIR). Bartok performs about 40
optimizations on the three IRs.

HIR is similar to CIL, except that HIR does not use stack-based
computation. The type system of HIR is almost the same as that
of CIL (or C#), consisting of primitive types, classes, interfaces,
arrays, and so on. All object-oriented operations are primitives in
HIR, such as virtual method invocation, type cast, and array access.

These primitives are lowered during the translation from HIR to
MIR. For example, virtual method invocation is translated to code
for fetching the vtable out of an object, fetching a method out of the
vtable, and calling the method on the object. The original MIR had
the same type system as HIR, which is not expressive enough to
represent the result of such a lowering. For example, no HIR types
could represent the vtable of a class that contains virtual methods.

MIR is further lowered to LIR. Then several transformations
are performed on LIR: class layout, instruction selection, register
allocation, and stack frame layout. The original LIR and the back
end were untyped.

The lowest level of LIR (essentially assembly) is written to
object files in a standard format. A standard linker links the object
files and creates native x86 executables.

2.2 The LILC Type System

LILC is a typed intermediate language we implement as the typed
MIR in Bartok to represent implementations of lowering object-
oriented primitives.

LILC was developed by Chen and Tarditi for compiling core
object-oriented language features, such as classes, objects, and ar-
rays [2]. We decided to use LILC because it faithfully represents
standard implementations of object layout, virtual method invoca-
tion, and runtime libraries such as type test and array store check.
Furthermore, LILC preserves notions of classes, objects, and sub-
classing, whereas other encodings compile those notions to func-
tional idioms (records and functions). It is easier to implement
LILC in Bartok because LILC preserves those object-oriented no-
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tions in the input language of Bartok. LILC has been proven sound
and its type checking is decidable.

This section explains the main ideas of how LILC represents
objects and runtime libraries. Other features can be found in earlier
work [2].

Classes and ObjectsLILC has both nominal (name-based) class
names and structural record types. Each classC has a correspond-
ing record typeR(C) that describes the object layout for the class
C. For a typical layout strategy, an object contains a vtable and a set
of fields. The vtable contains a tag—a unique identifier to identify
the class at runtime, and a set of virtual methods.

Suppose a class Point is defined as follows:

class Point{
int x;
virtual int distance(){. . .}}

The class Point contains an integer fieldx and a virtual method
distance that takes no parameters and returns an integer. The
object layout of Point is shown in Figure 2.

TypeR(Point) represents this layout naturally:

R(Point) =
{vtable : {tag : Tag(Point),

distance : (∃α ¿ Point. α) → int},
x : int}

R(Point) is a record type with two fields,vtable andx. The type for
vtable is another record type containing fieldstag anddistance.
Note that objects and pointers to objects are used interchangeably
in this paper. It should be clear from the context to which we refer.
For example, the vtable field is actually a pointer to a record of two
fields, but we omit the representation of the pointer in the type and
use a record type directly.

The tag of the class Point identifies Point at run time. Its type is
represented as Tag(Point), whereTag is an abstract type construc-
tor. LILC treats tags as abstract for simplicity.

The vtable contains a method pointer for the virtual method
“distance”. The method “distance” now takes one parameter— the
“this” pointer—to reflect the self-application semantics where we
pass an object to a virtual method when calling the method on the
object. The type of the “this” pointer requires that the “this” pointer
be an instance of Point or Point’s subclasses. We explain “this”
pointer types later in this section.

An instance ofC can be coerced to and from a record of type
R(C) without any runtime overhead. The coercions are runtime
no-ops. Objects are lightweight because interesting operations are
performed on records. Object and class notions are preserved to
simplify the type system.

The separation of the nominal and structural types eliminates
explicit structural recursion, because the record typeR(C) can re-
fer to any class name, includingC itself. Also, the separation al-
lows a straightforward typing of self-application semantics, which
is the most challenging problem in typed intermediate languages
for object-oriented languages.

Virtual Method Invocation Virtual method invocation requires a
distinction between the static type and the dynamic type (actual
runtime type) of an object. To call a methodm on an objecto with
static typeC, we need to passo as the “this” pointer tom, or at least
pass an object that has the samedynamictype (or its subclasses) as
o. Passing an object with the same static typeC may be unsafe.

Consider the following example:

void Unsafe(Pointp, Pointq){
vt = p.vtable;
dist = vt.distance;
dist(q); }

This function is unsafe, even though the distance method fetched
from p requires an object of Point andq is indeed an object of
Point. The function can be called in an unsafe way ifp is actually an
instance of a subclass of Point and the subclass overridesdistance
to access fields in the subclass but not in Point.

To guarantee the soundness of virtual method invocation, LILC
introduces “exact” notions of classes to represent dynamic types.
Unlike source languages Java and C# where a class nameC rep-
resents objects ofC andC ’s subclasses, LILC usesC to represent
only objects of “exact”C, notC ’s subclasses. LILC uses an exis-
tential type∃α ¿ C. α for objects ofC andC ’s subclasses. The
notion “¿” represents subclassing. The type variableα indicates
the dynamic type, which must be a subclass ofC. Objects with
source-level type (or static type)C are translated to have the ex-
istential type in LILC. LILC has subtyping rules to guarantee that
subclass objects can be used as superclass objects.

Suppose an object has dynamic typeτ . Any virtual method
fetched from the object has “this” pointer type∃α ¿ τ . α, mean-
ing only objects ofτ or τ ’s subclasses.

The “Unsafe” example is ill-typed in LILC. The objectp has
type∃α ¿ Point. α in LILC. To invoke method “distance” onp,
we first openp and introduce a type variableβ for p’s dynamic type.
The type of the “distance” method fetched fromp requires that the
“this” pointer be an object ofβ or β’s subclasses. The type checker
accepts passingp to “distance” but rejects passingq because we
cannot guarantee andq is an object ofβ or β’s subclasses.

Type-safe Runtime Libraries The type-safe runtime libraries are
represented in the LILC type system exactly like user programs.
This gives the compiler freedom to inline and optimize them.

Type Cast.Downward type casts check at run time whether an
arbitrary object is an instance of an arbitrary class or its subclasses.
In a typical implementation, each class stores a tag in its vtable. If
C extendsB, then the tag ofC has a pointer pointing to the tag of
B. The pointers form a tag chain. Downward type cast fetches tags
in the chain and compares them with the tag of the target class.

This typical implementation is expressed as a well-typed poly-
morphic function in LILC that can be applied to arbitrary objects
and arbitrary classes. The key ideas are to use types to connect an
object with the tag it contains, and to refine types according to the
tag comparison result. Two classes are the same if and only if their
tags are equal. If an objecto has typeτ and the tag ino is equal to
tag(C), thenτ = C. If one of the parent tags, which identifies a
parent class ofτ , is equal totag(C), thenτ ¿ C ando can be cast
to C.

Array Store Check. Source languages such as Java and C#
have covariant array types, that is, ifA is a subtype ofB, then
Array(A) is a subtype ofArray(B). Covariant array types re-
quire runtime “store checks” each time an object is stored into an
array. If arraya has static type array(B), to store an object of type
B in a, we have to check whether the object has the “actual” ele-
ment type ofa becausea might be an array ofA.

LILC uses invariant array types enclosed with existential types
to express source-level array types. An LILC array type is a subtype



of only itself. The source-level array subtyping is transferred to
subtyping on the enclosing existential types in LILC.

To store an object in an array that has type array(C), LILC
programs must explicitly check whether the object is an instance
of the element typeC, which can utilize the previous type cast
function.

2.3 The SST Type System

SST is a simple, sound, and decidable type system that supports
most common stack operations, aliased stack locations, and by-
reference parameters [13]. Other type systems for stacks either
were undecidable or did not support by-reference parameters.

A stack is viewed as a sequence of stack slots. The stack grows
toward lower addresses. The stack can be accessed by arbitrary
pointers to the stack. But only changing the value of the stack
pointer “sp” can grow or shrink the stack.

SST uses a stack type to describe the current stack state. SST
checks one function at a time. Each function can see only its own
stack frame. The previous stack frames are abstracted by a stack
variable.

Each stack slot in the current stack frame is labeled by a loca-
tion. A pointer to a stack slot labeled by location` has a singleton
type Ptr(`). The stack type tracks mapping from stack locations
to current types of values stored at those locations. We call such
mappingcapabilities. Capabilities are linear, that is, they cannot
be duplicated. Because of the separation between singleton pointer
types and capabilities, the capabilities can evolve, independently of
the pointer types, to track updates and deallocation.

SST uses a non-commutative, non-associative operator “::”
to glue capabilities together to form a stack type: “`2 : int ::
`1 : int :: `0 : ρ” means that two integers are on top of the stack
(at locations̀ 1 and`2) and the rest of the stack is abstracted as a
stack variableρ. Capabilities glued by:: form the spine of a stack.

To represent aliasing, SST introduces a “∧” operator to attach
a capability to a stack type. The capability describes an aliased
location to some location inside the stack type. Therefore, the scope
of the capability is the stack type: the capability is safe to use as
long as the stack type is not modified. To guarantee safety, the scope
can be only expanded to a larger stack type but not contracted.

By-reference Parameters.Consider a functionswap that has
two by-reference integer parametersx andy:

void swap(ref int x, ref int y) {...}

Suppose the compiler pushes parameters onto the stack from right
to left. In SST, the stack type in the precondition ofswap is
next(next(`0)) : Ptr(`x) :: next(`0) : Ptr(`y) :: `0 : (ρ ∧ {`y :
int} ∧ {`x : int}).

Upon entry toswap, the stack holds the argumentsx andy on
its top, each of which is a pointer to some aliased location insideρ.
Note that aliased locations̀x and`y may appear anywhere inρ, in
any order. In fact,̀x and`y may be the same location.

Theswap function can passx andy to other functions, further
expanding the scopes of`x and `y. But swap cannot return a
reference to a local variable defined in itself, because this contracts
the scope of the reference toρ.

2.4 Arrays

Loads and stores to array elements are primitive operations in CIL.
Naively, each array element access requires a run-time bounds
check to ensure that the element index is within the array’s bounds.
Compilers break up each array access into a sequence of more
primitive machine instructions. Many compilers, including Bartok,
will also optimize away many of the bounds checks. The TAL type
system must be able to ensure that every access is within bounds
even after the compiler’s transformations and optimizations.

Compiler

object f ile

MSILCIL readerConversion to HIRHIR opt imizat ionsLowering toTyped MIRTyped MIR opt imizat ionsLowering toTyped LIRTyped LIR opt imizat ionsCode generat ionDisassemble toTALTALVerif iler
Figure 3. Architecture of the New Compiler

To solve this problem, our type system incorporates tech-
niques from earlier work. First, following Xi and Harper’s work
on DTAL [16], it uses singleton types to represent known infor-
mation about integer values. For example, the number 5 has type
int, but 5 also has the more specific typeS(5), the singleton type
of integers equal to 5. More interestingly, a variablex might have
singleton typeS(α), where a basic block’s pre-condition specifies
a constraintα < 5 on the integer type variableα. The singleton
type together with the constraint ensure thatx is less than 5. DTAL
used an arithmetic constraint solver to verify that the pre-conditions
for basic blocks and array operations are satisfied. Unfortunately,
the constraint solver sits in the TAL verifier’s trusted computing
base, and for decidability’s sake the solver is limited to a subset
of arithmetic. Therefore, our type system follows the approach ad-
vocated by Crary and Vanderwaart [5] and Shaoet al. [14], which
keeps DTAL’s singleton types and pre-conditions, but also allows
explicit proofs of pre-conditions in the TAL program. In this ap-
proach, the TAL verifier only needs to check the supplied proofs,
and does not need to automatically solve arithmetic constraints.
Of course, the compiler must generate the proofs before the TAL
verifier can check the proofs; proof generation for arrays was be-
yond the scope of Crary and Vanderwaart [5] and Shaoet al. [14].
Section 4 describes how Bartok generates these proofs.

3. Implementation of a
Type-Preserving Compiler

This section provides implementation details for the new type-
preserving compiler. In order to preserve types, we must implement
typed MIR and LIR using the LILC and SST type systems. We must
also ensure that types are preserved across low-level optimizations.

The architecture of the new compiler is shown in Figure 3. The
original MIR type system was enhanced to express lowering of
object-oriented primitives. The original untyped LIR and untyped
backend were modified to preserve types. When generating object
files, the compiler adds a new section for type information. Other
sections in the object file have exactly the same format as the ones
generated by the base compiler. The verifier disassembles the code
and the type information and then verifies the typed assembly code.
A standard linker generates x86 executables from the object files
and discards the type information section.

Section 3.1 describes special handling of type variables to allow
optimizations. Section 3.2 shows how LILC and SST types are



represented in Bartok. Section 3.3 lists the optimizations performed
on typed MIR and LIR.

3.1 Type Variables

Type variables are important to guarantee soundness, as shown in
Section 2.2. A type variable that identifies the dynamic type of an
object should be associated with only that object.

Like traditional typed calculi, LILC introduces a fresh type
variable each time an existential type is opened. The type variable
identifies the dynamic type of an object. The type variable is in
scope until the end of the basic block. The type checker rejects the
“Unsafe” function in Section 2.2 (translated to LIR):

(1) p′ = open〈β〉(p); // p′ : β
(2) q′ = open〈γ〉(q); // q′ : γ
(3) vtable = p′.vtable;
(4) dist = vtable.distance // dist : (∃δ ¿ β. δ) → int
(5) dist(q′)

Instructions (1) and (2) introduce distinct type variablesβ andγ
for the dynamic types ofp andq respectively. The method “dist”
expects an object ofβ or β’s subclasses andq′ does not have that
type.

This strategy hinders common optimizations, though. For exam-
ple, two consecutive virtual method invocations on the same object
p may be translated to the following LIR code:

p1 = open〈α〉(p);
vtable1 = p1.vtable;
m1 = vtable1.m1

m1(p1, . . .)
p2 = open〈β〉(p);
vtable2 = p2.vtable;
m2 = vtable2.m2

m2(p2, . . .)

The objectp does not change between two calls, and thus it is sound
to apply common subexpression elimination (CSE) to combine the
two opens and vtable fetches. But the two distinct type variablesα
andβ prevent CSE from optimizing the code.

To work around this problem, we separate type variables used in
the programs and during type checking, to both allow optimizations
and guarantee soundness.

In typed MIR, type variables in programs do not identify dy-
namic types of objects. It is not required that each open instruction
introduces a fresh type variable. In fact, type variables are grouped
by their bounds. Two type variables that have the same upper and
lower bounds are considered the same. The bounds of type vari-
ables have to be accurate because optimizations may query infor-
mation about members in the type variables, which relies on the
bounds.

Opening two objects with the same existential type can reuse a
type variable. For example, the two open instructions in the above
example can use the same type variableα. The sharing of type
variables allows CSE to optimize the code sequence to:

p1 = open〈α〉(p);
vtable1 = p1.vtable;
m1 = vtable1.m1

m1(p1, . . .)
m2 = vtable1.m2

m2(p1, . . .)

Note that ifp changes between two calls or we call two methods
on two distinct objects, CSE cannot unsoundly optimize the code
because it cannot tell whether the two opens are the same.

The discrepancy of type variables used in programs and in type
checking may cause problems at control merge point. Suppose
basic block B1 has an open instructionx = open〈α〉(p1) and block

B2 hasx = open〈α〉(p2) and B1 and B2 merge to block B3. This
is acceptable in the program becausex has only one typeα. But
during type checking, the checker introduces two type variables for
x in B1 and B2, which results in disagreement ofx’s type in B3.

Typed MIR solves this problem by specifying for each basic
block its precondition, including for the type variables visible in
the basic block. In the above merge example, block B3 uses a new
type variable merged from the ones in B1 and B2 forx’s type.

Optimizations may move the code across basic block bound-
aries. To free the optimizations from maintaining preconditions of
basic blocks, typed MIR uses a two-phase type checking. The first
phase infers the precondition for each basic block, and the second
phase checks the block.

The first type-inference phase mainly deals with merging type
variables. Merging is similar to a union operation. Merging a set of
unrelated type variables produces a fresh type variable that tracks
the components from which the type variable was merged. Merging
a type variable with one of its components results in the type
variable itself.

For efficiency, the type checker performs a few straightforward
optimizations: variables whose types contain no type variables are
not tracked in type-checking environments because their types do
not change; if a method has only such variables, then type inference
is not applied.

3.2 Type Representations

The implementation of LILC and SST requires many new types
such as type variables, existential types, and polymorphic types.
Naively adding them to the compiler would incur significant
changes to the existing code, including type representations, type
checking, and optimizations. Our implementation changed or
added only 10% of the code in the compiler, because of the choices
we made in type representation and type checking.

3.2.1 Typed MIR Representation

Bartok, which is written in C# itself, uses a set of classes to rep-
resent MIR types, which include classes in the source programs,
function types, and so on.ClassType represents classes.Inter-
faceType represents interfaces.FunctionType represents func-
tion types. These classes form a hierarchy naturally. For example,
ClassType and InterfaceType are subclasses ofNamedType. Ir-
Type is the root class. Each instance of these classes corresponds
to a type.

An instance of ClassType represents a class in the source pro-
gram. The instance contains all information related to the corre-
sponding class, and has a table of all the members (fields and meth-
ods) of the class.

Typed MIR views an instance of ClassType as a combination of
both an LILC class name and the corresponding record type that de-
scribes the class layout. The instance has both name-based informa-
tion (class name, superclasses and interfaces) and structure-based
information (members). This way, typed MIR can reuse ClassType
without change, yet still preserve the two views of classes in LILC.
Another benefit of reusing ClassType is that typed MIR does not
need to coerce between objects and records, which saves many co-
ercion instructions and makes the code more concise. Those coer-
cions have no runtime overhead, though.

The class nameC (an instance of ClassType) in typed MIR also
serves as an encoding of the LILC existential type∃α ¿ C. α.
As a result, optimizations can remain as they are: they do not have
to deal with the new existential types. Also, the encoding makes
it unnecessary to coerce between existential types and class names
each time a field is fetched from an object or an object is created.
Typed MIR has a new typeExactClassTypeto represent “exact”
classes.



In a few cases, typed MIR still needs explicit existential types
for those types that don’t have the format∃α ¿ C. α and therefore
cannot use the encoding mechanism. An example is the interface ta-
ble entry. For this purpose, typed MIR has a classExistentialType.

Typed MIR adds a classTypeVarClass for type variables that
will be instantiated with classes and interfaces.

To represent the explicit implementations of tags (or runtime
types) in the Bartok compiler, typed MIR introducesRuntimeType
to model tags. An instance of RuntimeType that represents the
tag of classC, denoted as “Runtime(C)”, contains a reference to
the representation of class typeC. Tags of different classes have
different types.

Similarly to tags, typed MIR introduces a new typeVTableType
for vtables. An instance of VTableType that represents the vtable of
classC (denoted as “Vtable(C)”) contains a reference to the class
C.

The new types ExactClassType, TypeVarClass, RuntimeType,
and VTableType all inherit from ClassType. Therefore, each in-
stance of these types is regarded as a normal class and contains
a table of its members. The members are added by need to the ta-
ble. For example, virtual methods can be fetched as normal fields
out of vtables.

3.2.2 Typed LIR Representation

The implementation of Typed LIR extends SST to support stack-
allocated large values, such as floating-point numbers and struc-
tures. Basic SST assumes that stack-allocated values are word-
sized.

Typed LIR changes the symbolic representation for stack loca-
tions to “ρ + n”, meaningn bytes between the location labeled by
ρ. For aliased locations, the offsetn is always 0. Symbolic repre-
sentations for stack locations in SST are not suitable for typed LIR,
because the difference between two stack locations varies. The new
location representation makes it easier to tell whether a location is
an aliased location and to compute the new location when moving
along the stack.

Typed LIR also extends SST to support other features such as
objects, classes, and arrays. In fact, typed LIR can reuse most types
in typed MIR, for example, class types, interface types, array types,
existential types, etc. To avoid duplicating the types, Bartok allows
converting an MIR type to an LIR type by simply wrapping the
MIR type.

3.3 Optimizations

Our new compiler supports more than 40 optimizations of the
base Bartok compiler, with only 2 optimizations unsupported (see
Section 3.3.3). Our experience shows that most optimizations can
be easily modified to preserve types. This is partly due to our effort
to design suitable type representations.

3.3.1 MIR Optimizations

Major optimizations performed at MIR level are as follows:
• Copy propagation
• Constant propagation
• Constant folding
• Common subexpression elimination (including redundant load
elimination)
• Dead-code elimination
• Loop-invariant removal
• Reverse copy propagation of temporaries, which transforms
“t = e; v = t” to “ v = e”
• Optimizing convert instructions, which compacts chains of con-
vert instructions
• Jump chain elimination, which removes jumping to jump in-
structions

• Short circuiting, which removes redundant tests of boolean vari-
ables
• Loop header cloning, which turns while loops into do-while
loops
• Inlining (with heuristics to limit code size increase)
• Elimination of unreachable classes, methods, and fields (tree-
shaking)

Because our original MIR has type information already, the im-
plementation of typed MIR only needs to change three optimiza-
tions. Others are performed on typed MIR as they are on the orig-
inal MIR. Two optimizations CSE and treeshaking were changed
to support the new operators (such as “open”) and new types. CSE
needs to index all subexpressions. Treeshaking analyzes all instruc-
tions to determine which types are accessed. The inlining optimiza-
tion was changed to support cloning new operators and to sup-
port inlining of polymorphic functions. The changes are local and
straightforward. The fact that we can reuse almost all optimization
code confirms our typed MIR design choices.

3.3.2 LIR Optimizations

Major optimizations on LIR include:
• Copy propagation, including stack locations
• Constant propagation
• Dead-code elimination
• Jump chain elimination
• Reverse common subexpression elimination of load effective ad-
dress computations
• Peephole optimizations
• Elimination of redundant condition code setting
• Boolean test and branch clean up
• Floating point stack optimizations
• Conversion of “add” to “lea” (load effective address), for exam-
ple, “ecx = eax + ebx” to “lea ecx, [eax + ebx]”
• Graph-coloring register allocation
• Code layout
• Conversion of “switch” instructions to jumping to entries in jump
tables

Changes on LIR optimizations are mostly to propagate types,
since the original LIR was untyped. A few optimizations need more
significant changes.

The optimization that converts “add” instructions to “lea” in-
structions may introduce invalid effective addresses. It is still safe
because the addresses will never be used to access the memory. But
the type checker needs to differentiate such cases and prevent those
addresses from being used unsafely.

During register allocation, the compiler fixes the stack frame
and assigns stack slots to callee-save registers, function arguments,
and spills. We need to record the types of those stack-resident val-
ues to type check stack allocation upon entry to a function. The
checker needs to know the intended types for the newly-allocated
stack slots because of stack-allocated structures. Otherwise, the
checker has difficulty finding out the boundaries of slots. The origi-
nal SST did not need such annotations because each slot was word-
sized.

When jump tables are created for translating “switch” instruc-
tions, each entry in the jump table can be viewed as a function entry
point. We need to give types as preconditions to the entries in the
jump table. All entries have the same preconditions, so the jump
table can be typed as an array of function pointers.

3.3.3 Unsupported Optimizations

The base Bartok compiler optimizes memory allocation by inlining
the allocator implementation directly into the compiler-generated
code. Currently the TAL compiler cannot type-check the internal



implementation of the memory allocator, so it cannot support this
inlining. Our disabling of this optimization is responsible for most
of the difference in execution time between code generated by the
base Bartok compiler and the type-preserving compiler, as reported
in section 6.

Also, as explained in Section 4, we do not support the Array
Bounds Check elimination on Demand (ABCD) algorithm.

4. Arrays and Proofs
Bartok implements several optimizations that can eliminate run-
time bounds checks from array accesses. First, the common subex-
pression elimination attempts to consolidate repeated bounds
checks for the same array element. For example, the C# expres-
sion “a[i] = 1 - a[i]” makes two accesses to the same array element;
Bartok’s common subexpression elimination removes the bounds
check from the second access. Second, an induction variable anal-
ysis looks for loops where an array index variable is initialized to
a non-negative number, is incremented by one in each loop itera-
tion, and is checked against an array length in the loop condition.
Third, Bartok implements the Array Bounds Check elimination on
Demand (ABCD) algorithm [1], which infers unnecessary bounds
checks by solving a system of difference constraints (constraints of
the formx ≤ y + c, wherec is a constant).

This section describes our extensions to Bartok to generate
proofs of array access safety, including proofs for run-time bounds
checks and proofs for checks eliminated by common subexpression
elimination and by induction variable analysis, and then discusses
why we were unable to generate proofs for Bartok’s ABCD algo-
rithm. We illustrate the proof generation with a simple C# example:

public static void Main(string[] args){
for (int i = 0; i < args.Length; i++) args[i] = null;

}
With our proof-generation extensions, Bartok automatically gen-
erates the following TAL code for the Main method’s inner loop
(omitting the stack types and irrelevant register types, and renam-
ing and reformatting for clarity):

B1 (α:Int, β:Int, γ:Obj, ai:(ArrIndexγ α),
al:(ArrLenγ β), gl:(Ge0LtMaxα))
{eax:Sint32(α), ebx:Sint32(β), ecx:Sstring[](γ)} =

mov (dword ptr [ecx + eax *4+8] using ai), 0
add eax, (1 :Sint32(1))
; coerce eax toSint32(Succα) using (addToSuccα)
cmp eax, ebx
jl(p:Lt (Succα) β) B1(Succα, β, γ,

incrIndexγ α β p gl al,
al, incrGe0LtMaxγ α β p gl al)

In this code, the basic block B1 is polymorphic over three type
variables:α represents an array index,β represents an array length,
andγ represents an array. B1 is also polymorphic over three proof
variables. First, ai is a pre-condition that requires ArrIndexγ β,
which is defined to be equivalent to0 ≤ α < ALen(γ), where
ALen(γ) is the length of the arrayγ. Similarly, al and gl require
thatβ = ALen(γ) and0 ≤ α < MAX, where MAX is the max-
imum 32-bit signed integer. (We use the optimization-specific ab-
breviations ArrIndex, ArrLen, and GeLtMax to reduce the gener-
ated annotation size and to reduce verification time.) The registers
eax, ebx, and ecx hold the index, array length, and array, respec-
tively, where the typeSint32(X) is the singleton type of 32-bit
signed integers equal to X andSτ [] (X) is the singleton type of
arrays equal to X.

The first instruction of the loop moves null into array element
α, where ecx + 8 is the address of element 0, and each element
occupies 4 bytes. The type checker demands a proof that eax

hold a valid index for array held in ecx; the annotation “using
ai” supplies this proof. (Bartok can also generate proofs for the
more complicated address computations that occur for arrays of
large C# structs, but we discuss just the simplest case here.) The
add instruction increments eax, coercing the resulting singleton
type fromα + 1 to Succα for conciseness, where Succ stands for
successor. The cmp and jl instructions branch back to the beginning
of the block if α + 1 less than the array lengthβ. The branch
requires instantiations of B1’s type variables and proof variables
with valid types and proofs to satisfy B1’s pre-condition. In this
case, the axiom incrIndex proves that Succα is an in-bounds array
index, given proofs that Succα < β, that0 ≤ α < MAX (so
thatα + 1 doesn’t overflow), and thatβ = ALen(γ). Here, the jl
instruction supplies the proof variable p, asserting that Succα < β
in the taken branch.

Broadly speaking, there are two ways a compiler might gener-
ate proofs of array access safety. First, a compiler can generate the
proper proofs during the array bounds check introduction and dur-
ing the array bounds check elimination optimizations. In this case,
the compiler must preserve the proofs through subsequent com-
piler phases, using proof-preserving compilation [14]. Alternately,
a compiler can postpone proof generation until after all compiler
phases have completed, and try to infer proofs by analyzing the
compiler-generated assembly language code.

We decided to use some of both approaches, to compare their
relative strengths. We postpone proof generation until the conver-
sion from MIR to LIR, which happens well after the HIR’s in-
troduction of explicit array bounds check instructions, and after
MIR’s common subexpression elimination and induction variable
optimizations. We change Bartok to annotate HIR and MIR code
with hints that highlight the variables and constants used for ar-
rays, array indices, and array lengths. Just before MIR-to-LIR con-
version, Bartok runs two dataflow analyses. The first analysis prop-
agates the highlighted variables and constants forward as they flow
from one variable to another. The analysis classifies these variables
and constants into equivalence classes at each program point, intro-
ducing a type variable for each equivalence class. In the example
above,α represents the equivalence class containing just the vari-
able eax. The second analysis computes properties about the equiv-
alence classes (for example,β holds the length of arrayγ); each
property becomes a proof variable (e.g. “al”). If the analyses fail
to find a safety proof for an array access, they insert an extra run-
time bounds check; this ensures that compilation to verifiable TAL
can proceed even if the HIR and MIR optimizations outsmart the
analyses.

After conversion to LIR with proof annotations, the compiler
preserves the proofs through the LIR phases. For example, the LIR
jump chain elimination optimization takes jumps from block Bi to
block Bj, where Bj consists of a single jump to block Bk, and mod-
ifies Bi to jump directly to Bk. Both the Bi-to-Bj jump and Bj-to-
Bk jump may have proofs that prove their target’s precondition, so
we modified the compiler to compose these Bi-to-Bj and Bj-to-Bk
proofs together to produce valid Bi-to-Bk proofs. No optimization
or transformation required anything more sophisticated than this to
preserve proofs. Nevertheless, due to the large number of optimiza-
tions, we did not implement proof preservation for every instance
of every optimization. In particular, constant propagation may want
to replace a variable of typeS(α) with a constant c of typeS(c);
rather than fixing the types (e.g. by provingα = c), we simply
don’t propagate c to theS(α) variable in this case.

Our experience so far shows that practical proof preservation is
possible, but requires effort proportional to the number of compiler
optimizations and transformations. Implementing the proof infer-
ence for the MIR-to-LIR conversion required less effort than im-
plementing the LIR proof preservation. Nevertheless, proof preser-



vation has one potential advantage over inference: if the initial in-
put to the compiler already has proofs of array access safety (or
other integer-related properties), a proof-preserving compiler can
preserve these proofs, even if the proofs are too sophisticated for
inference to re-discover [14]. For example, we’ve used Bartok to
compile a hand-written LIR program, hand-annotated with proofs
showing that the program correctly computes the factorial, to TAL
code annotated with proofs showing correct factorial computation.
This works even though Bartok knows nothing about factorials.

4.1 ABCD

We also attempted to generate safety proofs for Bartok’s ABCD
array-bounds check elimination optimization, but the “proofs”
seemed to require axioms that are unsound for modular arithmetic.
This observation led to a counterexample:

void F(int[] arr, int i) {
if (i <= arr.Length){

int j = i - 1;
if (j >= 0) arr[j]++; } }

At the “arr[j]++” statement, Bartok’s ABCD analysis correctly con-
cludes that0 ≤ j andi ≤ arr.Length andj ≤ i− 1, but then incor-
rectly eliminates the bounds check based on the erroneous conclu-
sion that0 ≤ j ≤ arr.Length − 1. This conclusion fails when i
is the minimum signed 32-bit integer, so that i - 1 underflows. The
out-of-bounds array store clobbers nearby memory, undermining
type safety.

Since the original paper on ABCD [1] did not claim to work for
modular arithmetic, it was no surprise that the algorithm might fail
for 32-bit integer indices, and in fact Bartok already had heuristics
to squelch the ABCD algorithm whenever it saw large integer
constants. Unfortunately, the method above contains no constants
larger than 1, so Bartok still (incorrectly) eliminates the bounds
check. We were disappointed at not generating safety proofs for
ABCD, but we were grateful that our attempt led us to discover a
real vulnerability in Bartok.

5. GC Information Verification
Object files generated by the compiler also include information
used by the garbage collector. This information allows the garbage
collector to identify all references on the heap and stack at run time.
If this information is incorrect, the garbage collector may attempt
to trace non-reference data or prematurely reclaim live data, both of
which can lead to safety violations. Thus, in order to ensure safety,
we must check that all of the garbage collection information in the
object files is consistent with our type information.

The compiler generates three kinds of information for the
garbage collector’s use:

Thestatic data tableis a bitmap that indicates which words in
the static data section contain traceable references.

Theobject tablein each class’s vtable contains information that
allows the garbage collector to locate reference-containing fields in
instances of that class.

Thestack tablemaps every valid return address in the program
to information about how to find references in the caller’s stack
frame. At collection time, the collector walks the stack, using the
information for each return address on the stack to find references
in each frame.

For each kind of information, we must verify that the garbage
collector’s information is consistent with our type information.
Checking the static data table is straightforward: we simply com-
pare each bit in the bitmap with the type of the corresponding word
of memory. Checking the object tables is similar: each vtable ob-
ject in static data is identified by a special type, so we can extract
the word containing pointer information and use it to check the cor-

responding class’s type information. We give this word a singleton
type that depends on the class, which ensures that it cannot be al-
tered and that invalid vtables cannot be constructed by user code.
We currently omit checks for fields of classes defined in other com-
pilation units when those fields are not directly accessed by the
user’s code.

Checking stack tables is the most involved aspect of our garbage
collector verification. After checking each call instruction, we look
up the garbage collection information for the associated return ad-
dress. This information indicates which arguments, spill slots, and
callee-saved registers contain references, which can be compared
against the stack type at that call instruction. In addition, this infor-
mation indicates whether callee-saved registers have been saved on
this stack. In order to ensure that these values are traced by the col-
lector, we must ensure that they were correctly saved to the stack,
which we can do by comparing the fresh type variables assigned to
each callee-saved register with the type of the corresponding stack
slot. Finally, we must ensure that the return address saved on the
stack has not been replaced with a return address that happens to
have the same type but is not a valid index into the garbage collec-
tor’s tables. To do so, we refine the function pointer type to create
an immutable function pointer type that can only be pushed on the
stack with a “call” instruction and can only be popped off the stack
with a “ret” instruction.

Finally, we must ensure that any write barriers required by a
concurrent garbage collector have been placed appropriately by
the compiler. In our compiler, write barriers are implemented as
a method invocation that does any appropriate checks in addition
to performing the write. Thus, we can check write barriers by
making locations that require barriers immutable; any writes to
these locations must be performed by invoking the write barrier,
which is trusted code outside of the object file. Currently, we use a
collector that does not require write barriers.

When implementing these checks, we found it helpful to adapt
the source code for the runtime system directly for use in the ver-
ifier. The encodings for these garbage collection tables are quite
complex, so we reused the runtime system’s table decoder, adding
further checks where necessary to guard against invalid encodings.
To design the checker, we abstracted the garbage collector’s ref-
erence scanning code, replacing all direct memory references with
references to the associated type information. This approach gave
us greater confidence that our verifier’s checks match the assump-
tions of the runtime system.

6. Measurements
The compiler has about 150 benchmarks for day-to-day testing.
This section shows the numbers for the seven largest ones (Table 1).

The performance numbers were measured on a PC running Win-
dows Vista with two 2.66GHz CPUs and 4GB of memory. We use
separate compilation mode to compile the benchmarks separately
from the libraries. The runtime uses a mark-sweep garbage collec-
tor. The running times are averaged over five runs of each program.

Execution Time. Table 2 shows the performance compari-
son between TAL, the base-compiler-generated code, and CLR-
generated code. The fourth column “TAL/Base” is the second col-
umn “TAL” divided by the third column “Base”. The TAL code is
0.95-1.09 times slower than the base compiler’s generated code,
with a geometric mean of 1.02. The TAL code is slightly less effi-
cient than the base compiler-generated code because the new com-
piler does not support inlining of heap allocations. The two bench-
marks ahcbench and asmlc are allocation-intensive, and therefore
are affected most. The TAL code is nearly as efficient as the base-
compiler-generated code if the base compiler turns off inlining of
heap allocation.



Name Description Executable Size(in bytes)
ahcbench An implementation of Adaptive Huffman Compression. 4,820,992
asmlc A compiler for Abstract State Machine Language. 20,586,496
lcscbench The front end of a C# compiler. 7,766,016
mandelform An implementation of mandelbrot set computation. 12,775,424
sat solver An implementation of SAT solver written in C#. 4,943,872
selfhost1421 A version of the Bartok Compiler. 7,847,936
zinger A model checker to explore the state of the zing model. 13,074,432

Table 1. Benchmarks.

Benchmark TAL Base TAL/Base CLR
mandelform 1262.93 1234.92 1.02 1423.14
selfhost1421 256.30 235.46 1.09 93.99
ahcbench 4.08 3.75 1.09 4.50
lcscsbench 6.82 6.66 1.02 10.55
asmlc 0.96 0.92 1.04 1.58
zinger 2.89 3.01 0.96 3.32
sat solver 4.50 4.76 0.95 4.31
geomean 1.02

Table 2. Execution Time (in seconds)

Benchmark TAL Base TAL/Base
mandelform 16.15 15.65 1.03
selfhost1421 1087.99 63.54 17.12
ahcbench 6.37 6.24 1.02
lcscsbench 153.60 78.09 1.97
asmlc 158.78 160.76 0.99
zinger 25.59 17.68 1.45
sat solver 9.64 7.18 1.34
geomean 1.83

Table 3. Compilation Time (in seconds)

Compilation Time. Table 3 shows the performance comparison
of the TAL compiler and the base compiler. The TAL compiler is
0.99-17.12 times slower than the base compiler, with a geometric
mean of 1.83. The slowdown is largely due to type inference and
writing type information to object files. Typed MIR and LIR have
type inference to infer the precondition of each basic block. Typed
LIR type inference and writing type information to object files ac-
count for 49% of the compilation slowdown in lcscbench, 20% in
zinger, and 13% in satsolver, and 70% in selfhost1421. The bench-
mark selfhost1421 has significant slowdown because of inefficient
type inference for arrays. Other slowdown is due to a larger number
of IR instructions and MIR/LIR types. Typed MIR and LIR insert
coercion instructions to change types, most of which are no-ops at
runtime.

Object File Size.Table 4 shows the size comparison of object
files generated by the TAL compiler and the base compiler. The
TAL object files are significantly larger than those generated by
the base compiler: 1.69-2.52 times larger, with a geometric mean
of 2.05. We decided to make the TAL checker simple because the
checker is in the TCB. Therefore, the TAL programs are extensively
annotated with types. Excluding the type information, the object
files generated by the TAL compiler are as small as those generated
by the base compiler. A smarter checker might not require as much
type information because it could infer type information, but would
also be more difficult to trust or verify than a simple checker.

Type Checking Time. Table 5 shows the TAL checking time
compared with compilation time. The TAL checking time is 1.61%-

Benchmark TAL Base TAL/Base
mandelform 117088 65445 1.79
selfhost1421 18871862 9012642 2.09
ahcbench 148880 61077 2.44
lcscsbench 14205932 8004809 1.78
asmlc 31851094 18856426 1.69
zinger 2400600 1076470 2.23
sat solver 883589 351134 2.52
geomean 2.05

Table 4. Object File Size (in bytes)

Benchmark Checking Time (% of Compilation Time)
mandelform 1.61 %
selfhost1421 5.67 %
ahcbench 4.40 %
lcscsbench 18.78 %
asmlc 2.14 %
zinger 18.13 %
satsolver 5.87 %
geomean 5.59 %

Table 5. Checking Time Compared with Compilation Time

18.78% of the compilation time, with a geometric mean of 5.59%.
Type checking TAL is fast, as in prior TAL compilers.

7. Related Work
Many compilers use typed intermediate representations. We com-
pare our compiler with a few ones that preserve types to assembly
code. None of them has as many optimizations as Bartok has, or
supports compiler-runtime interface verification.

SpecialJ [4] is a certifying compiler for Java. SpecialJ produces
PCC binaries (code with a safety proof), which provides a more
general framework than TAL. It supports exception handling via
pushing and popping handlers. (Our system uses exception han-
dling tables, and we cannot yet check the tables.) SpecialJ treats
all runtime libraries as primitives, and thus it cannot verify them
or inline them into user programs. The SpecialJ paper used hand-
optimized code as examples and mentioned only two optimizations
that SpecialJ supported.

The TALx86 compiler is a type-preserving compiler from a C-
like language to x86 code [10], but it does not perform aggressive
optimizations such as array bound check elimination. The type
system lacks support for many modern language features such as
CIL’s by-reference parameters.

The LTAL compiler compiles core ML programs to typed
SPARC code [3]. It has a minimal runtime (no GC) and does not
support proofs about integers.



Leroy implemented a certified compiler from a C-like language
to PowerPC assembly code [8], verifying most of the compiler code
itself, not just the compiler’s output. The compiler has about 5,000
lines of code with few optimizations. The proof of the compiler is
about 8 times bigger in size than the compiler. It is difficult to scale
to large-scale compilers like Bartok.

Menonet al.proposed an SSA presentation that uses proof vari-
ables to encode safety information (for example array bounds) [9].
It supports optimizations by treating proof variables as normal vari-
ables. SSA is not suitable for TAL. Section 2.4 has discussed other
work about verifying array-bounds checking.

Vanderwaart and Crary developed a type theory for the compiler-
GC interface, but did not have an implementation [15].

8. Conclusion
In this paper, we have presented a large-scale, type-preserving, op-
timizing compiler. This work shows that preserving type informa-
tion at the assembly language level is practical even in the presence
of aggressive low-level optimizations. We were also able to imple-
ment a lightweight verifier that checks the safety of our compiler’s
output, including many aspects of its interaction with the runtime
system. We believe that type-preserving compilation is a useful ap-
proach to minimizing the trusted computing base.
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