
SafeDrive: Safe and Recoverable Extensions
Using Language-Based Techniques

Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak
University of California, Berkeley

{zf,jcondit,zra,ibagrak}@cs.berkeley.edu

Rob Ennals
Intel Research Berkeley

robert.ennals@intel.com

Matthew Harren, George Necula, Eric Brewer
University of California, Berkeley

{matth,necula,brewer}@cs.berkeley.edu

We present SafeDrive, a system for detecting and re-
covering from type safety violations in software exten-
sions. SafeDrive has low overhead and requires minimal
changes to existing source code. To achieve this result,
SafeDrive uses a novel type system that provides fine-
grained isolation for existing extensions written in C. In
addition, SafeDrive tracks invariants using simple wrap-
pers for the host system API and restores them when re-
covering from a violation. This approach achieves fine-
grained memory error detection and recovery with few
code changes and at a significantly lower performance
cost than existing solutions based on hardware-enforced
domains, such as Nooks [33], L4 [21], and Xen [13],
or software-enforced domains, such as SFI [35]. The
principles used in SafeDrive can be applied to any large
system with loadable, error-prone extension modules.

In this paper we describe our experience using
SafeDrive for protection and recovery of a variety of
Linux device drivers. In order to apply SafeDrive to these
device drivers, we had to change less than 4% of the
source code. SafeDrive recovered from all 44 crashes
due to injected faults in a network card driver. In ex-
periments with 6 different drivers, we observed increases
in kernel CPU utilization of 4–23% with no noticeable
degradation in end-to-end performance.

1 Introduction

Large systems such as operating systems and web servers
often provide an extensibility mechanism that allows the
behavior of the system to be customized for a particu-
lar usage scenario. For example, device drivers adapt the
behavior of an operating system to a particular hardware
configuration, and web server modules adapt the behav-
ior of the web server to the content or performance needs

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-0509544.

of a particular web site. However, such extensions are
often responsible for a disproportionately large number
of bugs in the system [9, 33], and bugs in an extension
can often cause the entire system to fail. Our goal is
to improve the reliability of extensible systems without
requiring significant changes to the core of the system.
To do so, we mustisolateexisting extensions, preferably
with little modification,restore system invariantswhen
they fail, restart them automatically for availability, and
(ideally) restore active sessions.

In this paper, we focus on the specific problem of im-
proving device driver reliability. Previous systems have
attempted to address this problem using some form of
lightweight protection domain for extensions. For exam-
ple, the Nooks project [32, 33] runs Linux device drivers
in an isolated portion of the kernel address space, mod-
ifying kernel API calls to move data into and out of the
extension. This approach prevents drivers from over-
writing kernel memory at the cost of relatively expensive
driver/kernel boundary crossings.

Our system, SafeDrive, takes a different approach
to improving extension reliability. Instead of using
hardware to enforce isolation, SafeDrive uses language-
based techniques similar to those used in type-safe lan-
guages such as Java. Specifically, SafeDrive adds type-
based checking and restart capabilities toexistingdevice
drivers written in C without hardware support or ma-
jor OS changes (i.e., without adding a new protection
domain mechanism). We have four primary goals for
SafeDrive:

• Fine-grained type-based isolation: We detect
memory and type errors on a per-pointer basis,
whereas previous work has only attempted to pro-
vide per-extension memory safety. SafeDrive en-
sures that data of the correct type is used in
kernel API calls and in shared data structures.
This advantage is critical, because it means that
SafeDrive can catch memory and type violations be-

fore they corrupt data, even for violations that oc-
cur entirely within the driver. Thus, we can pre-
vent the kernel or devices from receiving incor-
rect data for these cases. SafeDrive can also catch
more memory-related bugs than hardware-based ap-
proaches; specifically, SafeDrive can catch errors
that violate type safety but do not trigger VM faults.
In addition, because errors are caught as they occur,
SafeDrive can provide fine-grained error reports for
debugging.

• Lower overhead for isolation: SafeDrive exhibits
lower overhead in general, particularly for exten-
sions with many crossings (for which Nooks ad-
mits it is a poor fit [33, Sec. 6.4]). Compared with
SafeDrive, hardware-enforced isolation incurs addi-
tional overhead due to domain changes, page table
updates, and data copying. Also, the stronger type
invariants that SafeDrive maintains makes it possi-
ble to check many pointer operations statically.

• Non-intrusive evolutionary design. SafeDrive
provides type safety without changing the structure
of the host system (e.g., the OS kernel) significantly
and without rewriting extensions to use a new lan-
guage or API.

• Protection against buggy (but not malicious) ex-
tensions. In rare cases where true type safety would
require significant changes to the extension or to
the host API, we prefer to trust individual oper-
ations whose safety we cannot verify and gradu-
ally migrate to more complete isolation over time.
For example, our current implementation does not
yet attempt to verify memory allocation, dealloca-
tion, and mapping operations. In addition, we make
no attempt to protect the system from extensions
that abuse CPU, memory, or other resources (unlike
OKE [5] and Singularity [27]). As a consequence,
SafeDrive is able to guard against mistakes made
by the author of the extension but does not attempt
to protect against a malicious adversary capable of
exploiting specific behaviors of our system.

C and its variants have a number of important con-
structs that can be used to cause violations. In addition to
the most obvious issue of out-of-bounds array accesses,
C also has fundamental problems due to unions, null-
terminated strings, and other constructs. To transform a
driver written in C (which includes all Linux drivers) into
one that obeys stricter type safety requirements, we must
fix all of these flaws without requiring extensive rewrites
and ideally without requiring modifications to the kernel.

The existing approaches to type safety for C involve
the use of “fat” pointers, which contain both the pointer
and its bounds information. CCured [24], for example,
can make a legacy C program memory-safe by convert-

ing most of its pointers into fat pointers and then insert-
ing run-time checks to enforce bounds constraints. How-
ever, this approach is not realistic for drivers or for the
kernel, since it modifies the layout of every structure con-
taining pointers as well as every kernel API function that
uses pointers. To use CCured effectively in this context,
we would need to “cure” the entire kernel and all of its
drivers together, which is impractical.

Instead, SafeDrive uses a novel type system for point-
ers, called Deputy, that can enforce memory safety for
most programs without resorting to the use of fat point-
ers and thus without requiring changes to the layout of
data or the driver API. The key insight is that most of the
required pointer bounds information is already present in
the driver code or in the API—just not in a form that the
compiler currently understands. Deputy uses type anno-
tations, particularly in header files for APIs and shared
structures, to identify this information in places where it
already exists.

Although adding annotations to kernel headers or
driver code may seem like a burden, there are many rea-
sons why this approach is a practical one. First, the re-
quired annotations are typically very simple, allowing
programmers to easily express known relationships be-
tween variables and fields (e.g., “p points to an array of
lengthn”). Second, the cost of annotating kernel headers
is a one-time cost; once the headers are annotated, the
marginal cost of annotating additional drivers is much
smaller. Third, annotations are only mandatory for the
driver-kernel interface, while the unannotated data struc-
tures internal to the driver can use fat pointers. About
600 Deputy annotations were added to kernel headers for
the 6 drivers we tested (Section 5.2).

Any solution based on run-time enforcement of iso-
lation must provide a mechanism for dealing with vi-
olations. In SafeDrive we assume that extensions are
restartable provided that certain system invariants are re-
stored. In the case of Linux device drivers, invariant
restoration consists of releasing a number of resources
allocated by the driver and unregistering any name space
entries registered by the driver (e.g., new device entries
or file system entries), both of which we will refer to as
updates. In order to undo updates during fault recovery,
we track them using wrappers for the relevant API calls.
Because SafeDrive allows an extension to operate safely
in the kernel address space without the use of a hardware-
enforced protection domain, the task of managing and
recovering kernel resources is greatly simplified.

As with Nooks, SafeDrive cannot prevent every
extension-related crash, nor can it guarantee that mali-
cious code cannot abuse the machine or the device. How-
ever, because SafeDrive can catch errors that corrupt the
driver itself without corrupting other parts of the system,
we expect it to catch more errors, and we expect it to

Extension

Deputy

Compiler
Src−to−src GCC

Source

Annotated
Extension

Annotated

Headers
API

Instrumented
C Source

SafeDrive
Enabled

Figure 1: Compilation of an extension in SafeDrive.

catch them earlier.
We have implemented SafeDrive for Linux device

drivers, and we have used the system on network drivers,
sound drivers, and video drivers, among others. Our
experiments indicate that SafeDrive provides safety and
recovery with significantly less run-time overhead than
Nooks, especially when many calls to/from the driver are
made (e.g., 12% vs. 111% overhead in one benchmark,
and 4% vs. 46% in another). The main conclusion to
draw from these experiments is that language-based tech-
niques can provide fine-grained error detection at signif-
icantly lower cost by eliminating the need for expensive
kernel/extension boundary crossings.

In Section 2, we present an overview of the SafeDrive
system, including the compile-time and run-time compo-
nents. Then, in Section 3 and Section 4, we describe in
detail the required annotations and the implementation
of the recovery system. Section 5 describes our experi-
ments. Finally, Section 6 and Section 7 discuss related
work and our conclusions.

2 SafeDrive Overview

In SafeDrive, isolated recoverable extensions require
support from the programmer, the compiler, and the run-
time system. The programmer is responsible for insert-
ing type annotations that describe pointer bounds, and
the compiler uses these annotations to insert appropriate
run-time checks. The runtime system contains the imple-
mentation of the recovery subsystem.

The compiler is implemented as a source-to-source
transformation. Given the annotated C code, the Deputy
source-to-source compiler produces an instrumented ver-
sion of this source code that contains the appropriate
checks. This instrumented code is then compiled with
GCC. Most of the annotations required for this process
are found in the system header files, where they provide
bounds information for API calls in addition to the re-
covery system interface. The compilation process is il-
lustrated in Figure 1.

At run time, a SafeDrive-enabled extension is loaded
into the same address space as the host system and is
linked to both the host system and the SafeDrive runtime
system. Because all code runs in the same address space,

Other
Drivers

Linux Kernel

Enabled
SafeDrive−

Drivers

Wrappers

Failures

Tracking
Module

Recovery
Module

Kernel address space

Update

Figure 2: Block diagram of SafeDrive for Linux device
drivers. Gray boxes indicate new or changed compo-
nents.

no special handling of calls between the host system and
the extension is required, apart from the run-time checks
that the Deputy compiler inserts based on each function’s
annotations. The extension can read and write shared
data structures directly, again using the Deputy-inserted
run-time checks to verify the safety of these operations.
Note that the host system does not need to be anno-
tated or compiled with the Deputy compiler. Another
consequence of this binary compatibility property is that
non-SafeDrive extensions can be used with a SafeDrive-
enabled host system as-is.

The SafeDrive runtime system is responsible for “up-
date tracking” and recovery. It maintains data structures
tracking the list of updates the extension has done to ker-
nel state. Whenever a Deputy check fails, the control is
passed to the SafeDrive runtime system, which attempts
to cancel out these updates and restart the failed exten-
sion. Figure 2 shows the structure of the SafeDrive run-
time system for the Linux kernel.

Although this paper focuses on Linux device drivers,
we believe that the principles used in SafeDrive could
be applied to a wide range of other extensible systems
without a large amount of additional effort.

2.1 Example

Figure 3 shows some sample code adapted from
a Linux device driver. Here the programmer has
added the Deputy annotation “count(info count)”
to the buffer info field, which indicates that
info count stores the number of elements in this ar-
ray. The original code contained the same information
in comments only; thus, the existence of this relation-
ship between structure fields was previously hidden to
the compiler.

Code in boldface shows run-time checks that
SafeDrive inserts into the instrumented version of the
file (see Figure 1) to enforce isolation and to support

struct e1000 tx ring {
...
unsigned int info count;
struct e1000 buffer * count(info count)

buffer info;
...

};

static boolean t
e1000 clean tx irq(

struct e1000 adapter *adapter,
struct e1000 tx ring *tx ring)

{
...
assert(tx ring != NULL);
spin lock(&tx ring->tx lock);
track spin lock(&tx ring->tx lock);
...
i = tx ring->next to clean;
assert(0 <= i && i < tx ring->info count);
eop = tx ring->buffer info[i]

.next to watch;
...
track spin unlock(&tx ring->tx lock);
spin unlock(&tx ring->tx lock);

}

Figure 3: Example adapted from the Linuxe1000 net-
work card driver. The one programmer-inserted anno-
tation is underlined. The boldface code shows Deputy
run-time checks that are inserted into the instrumented
version of the file.

recovery. The first and third checks are assertions that
enforce memory safety. The first check ensures that
tx ring is non-null, which is required because Deputy
assumes that unannotated function arguments are either
null or point to a single element of the declared type,
much like references in a type-safe language. The third
check in the example enforces the bounds declared for
thebuffer info field before it is accessed. Note that
a simple optimization ensures that we do not insert re-
dundant checks every timetx ring is dereferenced; in-
deed, the low overhead of SafeDrive is in part due to
the fact that most pointer accesses require very simple
checks or no checks at all.

If either of these assertions fail, SafeDrive invokes the
recovery subsystem. To support recovery, SafeDrive in-
serts code to track the invariants that must be restored, as
seen in the second and fourth boldface statements in this
example.

This example shows that SafeDrive preserves the bi-
nary interface with the rest of the kernel, inserts relatively
few checks (tracked resource allocation is rare, and most
pointers point to a single object), at the expense of a few
annotations that capture simple invariants. In the next

two sections, we describe in detail our type system and
the associated recovery system.

3 The Deputy Type System

The goal of the Deputy type system is to prevent pointer
bounds errors through a combination of compile-time
and run-time checking. Adding these checks is a chal-
lenging task because the C language provides no simple
way to determine at run time whether a pointer points to
an allocated object of the appropriate type. Previous sys-
tems, such as CCured [24], addressed this problem by
replacing pointers with multi-word pointers, known as
“fat” pointers, that indicate the bounds for the pointer in
question. Unfortunately, this approach changes the lay-
out of data in the program, making it very difficult to
“cure” one module or extension independently of the rest
of the system.

In contrast, Deputy’s types allow the programmer to
specify pointer bounds in terms of other variables or
structure fields in the program. Deputy’s annotations
also allow the programmer to identify null-terminated ar-
rays and tagged unions. These annotations are flexible
enough to accommodate a wide range of existing strate-
gies for tracking pointer bounds. The key insight is that
most pointers’ bounds are present in the program in some
form—just not a form that is obvious to the compiler. By
adding appropriate annotations, we allow the compiler
to insert memory safety checks throughout the program
without changing the layout of the program’s data struc-
tures.

Deputy is implemented as a source-to-source transfor-
mation that runs immediately after preprocessing. It is
built on top of the CIL compiler framework [25], and the
current prototype contains about 20,000 lines of OCaml
code. Deputy has three phases:

1. Inference.First, Deputy infers bounds annotations
for every unannotated pointer in the program. For
unannotated local variables, Deputy inserts an an-
notation that refers to new local variables that ex-
plicitly track the unannotated pointer’s bounds; this
approach is essentially a variant of the fat pointer
approach. For globals, structure fields, and func-
tion parameters and results, Deputy assumes a de-
fault pointer type. We use the inference module
from CCured [24] to improve local variable anno-
tations and to identify global variables that may re-
quire manual annotation.

2. Type Checking.Once all pointers have Deputy an-
notations, Deputy checks the code itself. It emits
errors and run-time checks where appropriate.

3. Optimization.Since the type checking phase gener-
ates a large number of run-time checks, a Deputy-

specific optimization phase is used to eliminate
checks that will never fail at run-time and to identify
checks that will definitely fail at run time.

In the remainder of this section, we will discuss
Deputy’s types and run-time checks in more detail.

3.1 Deputy Type Annotations

In this section, we discuss Deputy’s type annotations and
their associated run-time checks. These type annotations
allow Deputy to verify code that uses unsafe C features,
such as pointer arithmetic, null-terminated strings, and
union types. We focus on the informal semantics of these
annotations; the technical details of the Deputy type sys-
tem and its soundness argument are beyond the scope of
this paper.

The annotations described in this section were chosen
because they represent a reasonably large range of com-
mon C programming practices. They are simple enough
to allow the type system to reason about them effectively,
and yet they are expressive enough to be usable in real-
world C programs.

It is important to note that the type annotations de-
scribed in this section arenot trusted by the compiler.
Deputy checks when assigning a value to a variable that
the value has the appropriate type; when using a variable,
the type checker assumes that it contains a value of the
declared type. In other words, these annotations function
much like the underlying C types. Of course, Deputy
only checks one compilation unit at a time, and there-
fore it must assume that other compilation units adhere
to the restrictions of any Deputy annotations on global
variables and functions, even if those other compilation
units are not compiled by Deputy.

Buffers. Deputy allows the user to specify the bounds
of a pointer by using one of four type annotations:safe,
sentinel, count(n), andbound(lo, hi). In
these annotations,n, lo, andhi stand for expressions
that can refer to other variable or field names in the im-
mediately enclosing scope. For example, annotations on
local variables can refer to other local variables in the
same function, and annotations on structure fields can
refer to other fields of the same structure. These an-
notations can be written after any pointer type in the
program; for example, a variable namedbuf could be
declared with the syntaxint * count(len) buf,
which means that the variablelen holds the number of
elements inbuf. The meanings of these annotations are
as follows:

• The safe annotation indicates that the pointer is
either null or points to a single element of the base
type. Such pointers are the most common kind of

pointer in C programs, and they typically require
only a null check at dereference.

• Thesentinel annotation indicates that a pointer
is useful only for comparisons and not for derefer-
ence. This annotation is typically used for point-
ers that point immediately after an allocated area,
as permitted by the ANSI C standard.

• The count(n) annotation indicates that the
pointer is either null or points to an array of at least
n elements. When accessing an element of this ar-
ray, Deputy will insert a run-time check verifying
that the pointer is non-null and the index is between
zero andn.

• The bound(lo, hi) annotation indicates that
the pointer is either null or points into an array with
lower and upper boundslo and hi. When ac-
cessing this array or applying pointer arithmetic to
this pointer, Deputy will verify at run time that the
pointer remains within the stated bounds.

Deputy allows casts between pointers with these an-
notations, inserting run-time checks as appropriate. For
example, when casting acount(n) pointer to asafe
pointer, Deputy will check thatn >= 1. Similarly,
when casting a pointerp with annotationcount(n)
to a pointer with annotationbound(lo, hi), Deputy
will verify that lo <= p and thatp + n <= hi.

The fourth annotation,bound(lo, hi), is quite
general and can be used to describe a wide range of
pointer bound invariants. For example, ifp points
to an array whose upper bound is given by a sen-
tinel pointere, we could annotatep with bound(p,
e), which indicates thatp points to an area bounded
by itself ande. In fact, thesentinel, safe, and
count(n) annotations are actually special cases of
bound(lo, hi); when used on a pointer namedp,
they are equivalent tobound(p, p), bound(p, p
+ 1), andbound(p, p + n), respectively. Thus,
when checking these annotations, it suffices to consider
thebound(lo, hi) annotation alone.

The invariant maintained by Deputy is as follows.
At run time, any pointer whose type is annotated with
bound(lo, hi) must either be null or have a value
betweenlo andhi, inclusive. That is, for a pointerp
of this type, we require thatp == 0 || (lo <= p
&& p <= hi). (Note that ANSI C allowsp == hi
as long asp is not dereferenced.) Furthermore, all of
these pointers must be aligned properly with respect to
the base type of this pointer. Given this invariant, we can
verify the safety of a dereference operation by checking
thatp != 0 && p < hi. In order to ensure that this
invariant is maintained throughout the program’s execu-
tion, Deputy inserts run-time checks before any opera-
tion that could potentially break this invariant, which in-

int * safe find(int * count(len) buf,
int len) {

assert(buf != 0);
int * sentinel end = buf + len;
int * bound(cur, end) cur = buf;
while (cur < end) {

assert(cur != 0 && cur < end);
if (*cur == 0) return cur;
cur++;

}
return NULL;

}

Figure 4: Code showing the usage of Deputy bounds
annotations. Underlined code indicates programmer-
inserted annotations; boldface code indicates checks per-
formed by Deputy at run time.

cludes changing the pointer itself or any other variable
that appears inlo or hi. Since this process generates a
large number of run-time checks, many of which are triv-
ial (e.g.,p <= p), Deputy provides an optimizer that is
specifically designed to remove the statically verifiable
checks that were generated by this process.

Figure 4 presents an example of Deputy-annotated
code. This function finds and returns a pointer to the
first null element in an array, if one exists. This example
shows several annotations at work. The first argument,
buf, is annotated withcount(len), which indicates
thatlen stores the length of this buffer. The return type
of this function,int * safe, indicates that we return
a pointer to a single element (or null). (This annotation
is not strictly necessary sincesafe is the default anno-
tation on most unannotated pointers.) In the body of the
function, we use a sentinel type forend, indicating that it
cannot be dereferenced. Also, we usecur andend for
the bounds ofcur, which allows us to incrementcur
until it reachesend without breakingcur’s bounds in-
variant.

The boldface code in Figure 4 indicates the checks
that were inserted automatically by Deputy based on
the programmer-supplied annotations. When applying
arithmetic tobuf, we verify thatbuf is not null, since
Deputy disallows arithmetic on null pointers. When
dereferencing, incrementing, or returningcur, we ver-
ify that there is at least one element remaining in the ar-
ray, which is a requirement for all of these operations. In
many cases, Deputy’s optimizer has removed checks that
it determined to be unnecessary. For example, the result
of buf + len is required to stay in bounds, so Deputy
checks thatbuf <= buf + len <= buf + len;
however, sincelen is known to be the length ofbuf,
Deputy’s optimizer has removed this check. In addi-
tion, thecur++ operation requires the same check as
the dereference in the previous statement; in this exam-

size t strlcpy(
char * count(size-1) nullterm dst,
const char * count(0) nullterm src,
size t size);

Figure 5: Example of Deputy’snullterm annotation.

ple, Deputy’s optimizer has removed the duplicate check.
Note that there are still many opportunities for further op-
timization of these checks; for example, a flow-sensitive
optimizer could eliminate the second assertion entirely.
We leave such improvements to future work, though it
is worth noting that improvements in Deputy’s run-time
overhead are still well within reach.

Null termination. In addition to the basic pointer
bounds annotations, Deputy also provides anullterm
annotation that can be used in conjunction with any one
of the above annotations. This annotation indicates that
the elementsbeyondthe upper bound described by the
bound annotation are a null-terminated sequence; that
is, the bound annotation describes a subset of a larger
null-terminated sequence. For example,count(5)
nullterm indicates that a pointer points to an ar-
ray of five elements followed by a null-terminated se-
quence. Note thatcount(0) nullterm indicates
that a pointer points to an empty array followed by a
null-terminated sequence—that is, it is a standard null-
terminated sequence.

To see why this annotation is useful, consider the dec-
laration for thestrlcpy() function shown in Fig-
ure 5. The argumentdst is annotated aschar *
count(size-1) nullterm, meaning that it has an
least size-1 bytes of real data followed by a null-
terminated area (typically just a zero byte).1 Thesrc ar-
gument isconst char * count(0) nullterm,
which just means that it is a standard null-terminated
string with unknown minimum length. These annota-
tions demonstrate the flexibility of thenullterm anno-
tation, since Deputy is capable of describing both a stan-
dard null-terminated pointer as well as a null-terminated
array with some known minimum size.

The checks inserted for null-terminated sequences are
a straightforward extension of the checks for bounds
annotations. For example, when dereferencing a null-
terminated pointer, we verify only that the pointer is non-
null. When incrementing a null-terminated pointer, we
check that the pointer stays within the declared bounds,
and if not, we check that it is not incremented past the
null element. Note that thenullterm annotation can
be safely dropped during a cast, but it cannot be safely
added to a pointer that is not null-terminated.

struct e1000 option {
enum {range option, list option} type;
union {
struct {

int min, max;
} range when(type == range option);
struct {

int nr;
struct e1000 opt list {...} *p;

} list when(type == list option);
} arg;

};

Figure 6: Code showing usage of Deputy’swhen anno-
tation, adapted from Linux’se1000 driver.

Tagged unions. Deputy also provides support for
tagged unions. From the perspective of memory safety,
C unions are a form of cast, allowing data of one type
to be reinterpreted as data of another type if used im-
properly. C programmers usually use a tag field in the
enclosing structure to determine which field of the union
is currently in use, but the compiler cannot verify proper
use of this tag. As with pointer bounds, Deputy allows
the programmer to declare the conditions under which
each field of the union is used so that these conditions
can be verified at run time when one of the union’s fields
is accessed. To do so, the programmer adds the anno-
tation “when(p)” to each field of the union, wherep
is a predicate that can refer to variable or field names in
the immediately enclosing scope, and can use arbitrary
side-effect-free arithmetic and logical operators.

For example, Figure 6 shows the annotations used by
the Linux device drivere1000. In this example, the
type field indicates which field of the union is currently
selected. When using Deputy, the programmer can place
thewhen annotations to indicate the correspondence be-
tween the tag and the choice of union field so that it can
be checked when the union is accessed. For example,
when reading the fieldrange, Deputy will check that
type == range option. When the user wishes to
change the tag field (or any field on which thewhen
predicates depend), Deputy verifies that pointers in the
newly selected union field are null and therefore valid.

There are two important restrictions that Deputy im-
poses on the use of tagged unions. First, they must be
embedded in structures that contain one or more fields
that can be used as tags for the union. Second, one cannot
take the address of a union field, although it is possible to
take the address of the structure in which it is embedded.

Other C features. Deputy supports a number of other
common C features that we do not discuss in detail in
this paper. For example, Deputy will use format strings
to determine the types of the arguments inprintf-style

functions. Also, Deputy allows the program to anno-
tate open arrays (i.e., structures that end with a variable-
length array whose length is stored in another field of the
structure). Finally, Deputy provides special annotations
for functions likememcpy() andmemset(), which re-
quire additional checks beyond those used for the core
Deputy annotations.

3.2 Annotating Programs

The Deputy type system expects to see a pointer bound
annotation on every pointer variable in the program in
order to insert checks. However, since adding annota-
tions to every pointer type would be difficult and would
clutter the code, Deputy provides a simple inference
mechanism. For any local variable of pointer type and
for any cast to a pointer type, Deputy will insert two
new variables that explicitly hold the bounds for this
type. The type can then be automatically annotated with
bound(b, e), whereb ande are the two new vari-
ables. Whenever this variable is updated, Deputy inserts
code to updateb ande to hold the bounds of the right-
hand side of the assignment. Although this instrumenta-
tion inserts many additional assignments and variables,
the trivial ones will be eliminated by the Deputy-specific
optimizer.

We also use the inference algorithm from CCured [24]
to avoid inserting unnecessary local variables. For ex-
ample, if a local variable is incremented but not decre-
mented, we insert a new variable for the upper bound
only. This inference algorithm is also useful for inferring
nullterm annotations.

For pointer types other than those found in local vari-
ables or casts, Deputy requires the programmer to insert
an annotation. Such pointer types include function proto-
types, structure fields, and global variables. These anno-
tations are required in order to support separate compi-
lation; since Deputy cannot instrument external function
arguments or structures fields the same way it can in-
strument local variables, the programmer must explicitly
supply bounds annotations. Fortunately, most of these
annotations appear in header files that are shared among
many compilation units, which means that each addi-
tional annotation will benefit a large number of modules
in the program. Also, Deputy can optionally use a de-
fault value for unannotated pointers in the interface (usu-
ally safe); however, such annotations are unreliable and
should eventually be replaced by an explicit annotation.
The inference algorithm assists in this process as well
by identifying global variables, functions, and structure
fields that require explicit annotations.

3.3 Limitations and Future Work

The most significant safety issue that is ignored by
Deputy is the issue of memory deallocation. Deputy is
designed to detect safety violations due to bounds viola-
tions, but it does not check for dangling pointers, since
detecting such violations would require more extensive
run-time checking or run-time support than we currently
provide. Fortunately, the issue of dangling pointers is
largely orthogonal to the problems that Deputy solves;
thus, the programmer can choose to use a conservative
garbage collector or to simply trust that the program’s
deallocation behavior is correct.

In addition, there are some cases in which Deputy’s
type system is insufficient for a given program. First,
Deputy’s type system is sometimes incapable of express-
ing an existing dependency; for example, programmers
sometimes store the length of an array in a structure that
is separate from the array itself. Second, Deputy’s type
system sometimes fails to understand a type cast where
there are significant differences between the pointer’s
base type before and after the cast. Based on our ex-
perience with device drivers (see Section 5) and our pre-
vious experience with CCured [24], such casts occur at
about 1% of the assignments in a C program. In both of
these cases, Deputy provides a trusted cast mechanism
that allows the programmer to suppress any Deputy er-
rors or run-time checks for a particular cast or assign-
ment, effectively flagging this location for more detailed
programmer review. One of our primary goals in design-
ing Deputy and instrumenting programs is to minimize
the number of such casts required; however, in many of
these cases, a failure in Deputy’s type system indicates a
lack of robustness in the code itself. Thus, the process of
annotating code can help identify places where the inter-
face between modules can be improved.

Deputy does not provide any special handling for mul-
tithreaded code, since correctly synchronized code will
still be correctly synchronized after being compiled with
Deputy. However, C code that was previously atomic
may no longer be atomic due to the addition of run-time
checks. Thus, the programmer must ensure that their
code makes no unwarranted assumptions about the atom-
icity of any particular piece of C code.

Finally, Deputy’s changes to the source code (e.g.,
temporary variables and run-time checks) can make
source-level debugging more challenging. However,
with sufficient engineering effort, code compiled with
Deputy could be viewed in the debugger with the same
ease as code compiled by GCC. If necessary, code can
currently be compiled and debugged with GCC first, us-
ing Deputy only for the final stages of development.

In the future, we hope to provide support for many
of the programming idioms that currently require trusted

casts. For example, the Linuxcontainer of macro,
which subtracts from a pointer to a field to get a pointer to
the containing object, is a construct we hope to support
in a future version. We also plan to improve our han-
dling of void* pointers, particularly forvoid* point-
ers that appear in kernel data structures in order to hold
private data for a module. And finally, we plan to im-
prove Deputy’s optimizer in order to further reduce the
number of run-time checks required. Our long-term goal
is to allow programmers to migrate drivers (and even the
kernel itself) to a type-safe version of C without signifi-
cantly rewriting their code or affecting performance.

4 Recovery System

This section describes how SafeDrive tracks updates
from the driver and recovers from driver failures. We
also compare our recovery mechanisms to that of Nooks.

4.1 Update Tracking

The update tracking module maintains a linked list of all
updates a driver has made to kernel state that should be
undone if the driver fails. For each update, the list stores
a compensation operation[36], which is a pointer to a
function that can undo the original update, along with
any data needed by this compensating action. For exam-
ple, in Linux device drivers, the compensation function
for kmalloc() is kfree(). This list is also indexed
by a hash table, which allows compensations to be re-
moved from the list if the driver manually reverses the
update (e.g., if an allocated block is freed). SafeDrive
provides wrappers for all functions in the kernel API that
require update tracking, allowing drivers to use this fea-
ture with minimal changes to their source code.

In a few cases, we need to modify the kernel to handle
changes to the list of updates that are not explicitly per-
formed by the driver. For example, timers are removed
from the list after the corresponding timer function exe-
cutes.

Updates recorded by the tracking module are divided
into two separate pools, one associated with the driver it-
self (long-term updates) and the other associated with the
current CPU and control path (short-term updates). The
latter pool holds updates like spinlock-acquires, which
have state associated with the local CPU and must be un-
done atomically (without blocking) on the same CPU.

4.2 Failure Handling

Failures are detected by the run-time checks inserted by
the Deputy compiler. When a run-time checks fails, it
invokes the SafeDrive recovery system. First, a descrip-
tion of the error is printed for debugging purposes. For

problems due to memory safety bugs, this error report
pinpoints the actual location where a pointer leaves its
designated bounds or is dereferenced inappropriately.

Then SafeDrive goes through a series of steps to clean
up the driver module itself, restoring kernel state and op-
tionally restarting the driver, while at the same time al-
lowing other parts of the system to continue running. We
maintain two invariants during the recovery process, both
vital to the success of recovery:

• Invariant 1: No driver code is executed from the
point when a failure is detected until recovery is
complete. This invariant is required because the
driver is already corrupt; executing driver code
could easily trigger more failures or corrupt kernel
state.

• Invariant 2: No kernel function is forcefully stopped
and returned early. Forceful returns from kernel
functions would corrupt kernel state. On the other
hand, the driver function that fails is always stopped
forcefully, in order to maintain the first invariant.

Returning gracefully from a failed driver. The ba-
sic mechanism for “forceful return” from a driver func-
tion is a setjmp()/longjump() variant that un-
winds the stack and jumps directly to the next instruc-
tion after setjmp(). SafeDrive requires the pro-
grammer to identify driver entry points, and at these
entry points, SafeDrive adds a standard wrapper stub
that callssetjmp() to store the context in the cur-
rent task structure (Linux’s kernel thread data structure).
When a failure occurs, the failure-handling code will call
longjmp() to return to the wrapper, which then returns
control to the kernel with a pre-specified return value, of-
ten indicating a temporary error or busy condition. The
failure-handling code also sets a flag that indicates that
the driver is in the “failed” state. This flag is checked at
each wrapper stub to ensure that any future calls to the
driver will return immediately, thus preserving Invariant
1. This approach allows the kernel to continue normally
when the driver fails.

Typically, identifying driver entry points is a simple
task; to a first approximation, we can look for all driver
functions whose address is taken. Determining the ap-
propriate return value for a failure can be more difficult,
since returning an inappropriate value can cause the ker-
nel to hang. Fortunately, the appropriate return value is
relatively consistent across each class of drivers in Linux.
The Nooks authors provide a more extensive study of
possible strategies for selecting proper return values [32].

The recovery process is more complicated in cases
where the driver calls back into the kernel, which then
calls back into the driver, resulting in a stack that con-
tains interleaved kernel and driver stack frames. If we

jump to the initial driver entry point, we skip important
kernel code in the interleaved stack frame, violating In-
variant 2. However, if we jump to the closest kernel stack
frame, we must ensure that Invariant 1 is maintained
when we return to the failed driver. To solve this prob-
lem, SafeDrive records a context at each re-entry point
into the driver. A counter tracks the level of re-entries
into the driver, which is incremented whenever the driver
calls a kernel function thatmaycall back into the driver.
After the driver fails, control jumps directly to re-entry
points when it returns from these kernel functions. Es-
sentially, we finish executing any kernel code still on the
stack while skipping any driver code still on the stack.
This technique is similar to the handling of domain ter-
mination in Lightweight RPCs [4], although in our case,
both the kernel and the module run in the same protection
domain.

Restoring kernel state and restarting driver. Dur-
ing the recovery process, all updates associated with the
failed driver are undone in LIFO order by calling the
stored compensation functions. These compensations
undo all state changes the driver has made to the ker-
nel so far, similar to exception handling in languages
like C++ and Java. The main difference between our ap-
proach and C++/Java exceptions is that the compensation
code does not contain any code from the extension itself,
thus preserving Invariant 1. As a result, the extension
will not have an opportunity to restore any local invari-
ants; however, because the extension will be completely
restarted, we are only concerned with restoring the ap-
propriate kernel invariants. Note that this unwinding task
is complicated by the fact that it is executed in parallel
with other kernel code and by the fact that the failure
could have happened in an inconvenient place, such as
an interrupt handler or timer callback. Thus, after CPU-
local compensations such as lock releases are undone in
the current context, all other compensations are deferred
to be released in a separate kernel thread (inevent/*).

After compensations have been performed, the
driver’s module is unloaded. As mentioned above, we do
not call the driver’s deinitialization function; however,
because we track all state-changing functions provided
by the kernel, including any function that registers new
devices or other services, calling the driver’s deinitializa-
tion function should not be necessary. After this process
is complete, depending on user settings, the driver can
be restarted automatically from a clean slate. The restart
process follows the normal module initialization process.

The current SafeDrive update tracking and recovery
code is a patch to the Linux kernel changing 1084 lines,
tracking in total 21 types of Linux kernel resources for
the recovery of four drivers in three classes: two network
card drivers, one sound card driver, and one USB device

driver (see Section 5 for details). The resources tracked
include 4 types of locks, 4 PCI-related resources, and 4
network-related resources, among others.

4.3 Discussion

The recovery system of SafeDrive resembles that of
Nooks [33]. Both track different types of kernel updates
and undo them at failure time. However, the fact that all
code using SafeDrive runs in the same protection domain
makes SafeDrive’s recovery system significantly simpler
and less intrusive. In fact, the SafeDrive kernel patch is
less than one tenth the size of Nooks’. Update-tracking
wrappers and compensation functions are simpler mainly
because there is no need for code to copy objects in and
out of drivers, to manage the life cycles of separate pro-
tection domains, or to perform cross-domain calls. In
addition, implementing the cross-domain calls efficiently
can complicate the system design significantly. For ex-
ample, Nooks uses complicated page table tricks to en-
able fast writes of large amount of data from the device
driver to the kernel. Nooks also gives each domain its
own memory allocation pool, which requires even more
changes to the kernel. We believe that simpler recov-
ery code adds significantly to the trustworthiness of the
whole mechanism since testing is less effective for such
code than for the normal execution path.

The fact that SafeDrive lets drivers modify kernel
data structures directly has some ramifications for kernel
consistency, which contrasts with Nooks’ call-by-value-
result object passing. For each driver call, Nooks first
copies all objects the driver may modify, then lets the
driver work on the copies, and finally copies the results
back. This approach provides atomic updates of kernel
objects and thus should provide more consistency. How-
ever, we have found there are caveats to this approach.
First, it has problems on SMP systems because other pro-
cessors see the updates to kernel data structures at a dif-
ferent time than they would ordinarily see the updates;
the original Nooks paper suggests that SMP is not sup-
ported yet [33, end of Sec. 4.1]. Second, many kernel
data structure updates are not done through this mecha-
nism but through cross-domain calls to kernel functions.
The interaction of these two mechanisms becomes com-
plicated quickly.

Our recovery scheme is orthogonal to the Deputy type
system and can also work with other languages, includ-
ing type-safe languages such as Java. As far as we know,
current type-safe languages and runtimes do not provide
a general mechanism for recovering buggy extensions.
Our technique for gracefully returning from a failed ex-
tension should apply here. More broadly, a recovery
module based on compensation stacks [36] would be a
valuable asset for these systems.

Driver Description
e1000 Intel PRO/1000 network card driver

tg3 Broadcom Tigon3 network card driver
usb-storage USB mass-storage driver

intel8x0 Intel 8x0 builtin sound driver
emu10k1 Creative Audigy 2 sound driver

nvidia NVidia video driver

Table 1: Drivers used in experiments.

State and session restoration for failed drivers is not
yet implemented in our prototype. Thus, the driver will
be in an initial empty state after recovery. However,
we believe the shadow driver approach proposed by the
Nooks project [32] should apply to our system. Its imple-
mentation should also be simpler because of the absence
of multiple hardware protection domains.

5 Evaluation

In this section, the recovery mechanism is first evaluated
in terms of successful recoveries in the face of randomly
injected faults. Then we measure two distinct types of
overhead of using SafeDrive: (1) the one-time overhead
of annotating APIs and adding wrapper functions to a
particular extension, and (2) runtime overhead due to ad-
ditional checks inserted by the Deputy type system and
due to update tracking for recovery. We quantify the first
one by noting how much of the kernel API and wrappers
needed alteration to support a handful of drivers that we
chose from different subsystems of the kernel. We quan-
tify the second source of overhead with traditional per-
formance benchmarks.

Our experiments are done with six device drivers in
four categories for the Linux 2.6.15.5 kernel, as shown
in Table 1. All drivers are annotated with Deputy anno-
tations to detect type-safety errors. However, due to time
constraints, we only added update tracking and recovery
support to the four drivers with names shown in bold.

5.1 Recovery Rate

Here we evaluate how well SafeDrive is able to handle
various faults in drivers. We usecompile-time software-
implemented fault injectionto inject random faults into
the driver, and then we run the driver with and with-
out SafeDrive. We wrote a compile-time fault injection
tool as an optional phase in the Deputy compiler. The
tool injects into C code seven categories of faults, shown
in Table 2, following two empirical studies on kernel
code [10, 31]. We did not use an existing binary-level
fault injection tool, such as that used by the Rio file cache
[26] or Nooks [34], because all of Deputy’s checks are
inserted at compilation time, which means that Deputy

Fault Category Code Transformation
Loop fault Make loop count larger by: 1 with 0.5 prob., 2–1024 with 0.44 prob., and 2K–4K with 0.06 prob.

Scan overrun Make size parameter tomemset-like functions larger as the line above
Off-by-one Change< to <=, etc., in boolean expressions

Flipped condition Negate conditions in if statements
Missing assignment Remove assignments and initialization of local vars
Corrupt parameter Replace a pointer parameter with null, or a numeric parameter with a random number

Missing call Remove calls to functions and return a random result as in theline above

Table 2: Categories of faults injected in recovery experiments.

Correct Incorrect
Innocuous Mal-

SafeDrive Works Errors Crashes functions
Off 75 n/a 44 21
On 113 8 0 19

Table 3: Results of 140 runs ofe1000 with injected
faults, with SafeDrive off and on. “Correct” means that
the driver behaved as expected, possibly with the help of
SafeDrive’s recovery subsystem and assuming the bugs
are transient.

Detection Crashes Malfunc. Innocuous Total
Static 10 0 3 13 (24%)

Dynamic 34 2 5 41 (76%)
Total 44 2 8 54

Table 4: Breakdown for the 54 cases in which SafeDrive
detected errors.

does not have a chance to catch errors introduced via bi-
nary fault injection. Compile-time fault injection allows
us to evaluate Deputy’s error detection fairly, and it also
has the benefit of being able to introduce more realistic
programming errors.

The fault-injection experiments were done with
e1000 driver. For each experiment, 5 random faults of
the same category were inserted into the driver code dur-
ing the compilation process. A script exercised the driver
by loading it, configuring networking, downloading a
large (89MB) file, checksumming the file, and finally un-
loading the driver. Then the same script was run with the
unmodifiede1000 driver to check whether the system
was still functioning. This test was performed with and
without SafeDrive recovery on. When SafeDrive recov-
ery was off, Deputy checks were still performed, but they
did not trigger any action when failures were detected.
Thus the driver should have behaved exactly the same as
the original one with faults injected.

Table 3 shows the results of all 140 runs, with 20
runs per fault category. When SafeDrive is disabled, 44
of these runs resulted in crashes and 21 resulted in the
driver malfunctioning. When SafeDrive was enabled,
SafeDrive successfully prevented all 44 crashes, and it
invoked the recovery subsystem on 2 of the 21 non-crash
driver malfunctions. In addition, there were 8 runs where

SafeDrive successfully detected apparently innocuous
type-safety errors that did not trigger crashes or malfunc-
tions with SafeDrive disabled, but failed Deputy checks
when SafeDrive was on.

A closer look at the results reveals that, among the 7
categories of faults injected, all categories except “off-
by-one” and “flipped condition” resulted in crashes when
SafeDrive was off. The fact that SafeDrive prevented
these crashes indicates that these crashes were actually
due to type-safety errors, not other serious errors such
as incorrect interrupt commands. On the other hand, the
malfunctioning runs were due to a variety of reasons, in-
cluding setting hardware registers to bad values and in-
correct return value checking. Type-safety checks alone
cannot always detect these errors.

Overall, SafeDrive detected problems in 54 of the
runs. Table 4 shows that 24% of the problems were de-
tected statically by the Deputy compiler. These are errors
that werenotdetected by GCC, and in fact 10 of them led
to crashes. These compile-time errors include passing an
incorrect constant size argument tomemcpy and deref-
erencing an uninitialized pointer, among others.

Of the innocuous errors, five were detected dynami-
cally, causing SafeDrive to invoke recovery and success-
fully restart the driver. Although these errors appear to
be innocuous, they are likely latent bugs; thus, invoking
recovery seems to be a reasonable response. Of course,
SafeDrive has no way to know which errors will be truly
benign.

These results show that SafeDrive is effective in de-
tecting and recovering from typical memory and type-
safety errors in drivers. In addition, a significant por-
tion of these errors are caught at compile time, before
the driver is even run. Finally, it seems unlikely that
SafeDrive will always preventall crashes, as it did with
thee1000, due to the limits of type checking.

5.2 Annotation Burden

Table 5 shows the number of lines of code we changed
in order to use SafeDrive on these drivers. The third col-
umn shows all Deputy-related changes, and the next four
columns show the number of lines containing each type
of Deputy annotation. These numbers do not add up to

Driver Original LOC
Deputy Changes

Recovery Changes
LOC Modified Bounds Nullterm Tagged Unions Trusted Code

e1000 17011 260 146 15 2 47 270
tg3 13270 359 78 9 0 64 156

usb-storage 13252 136 16 11 0 21 118
intel8x0 2897 124 31 2 0 8 167
emu10k1 11080 441 66 11 0 23 n/a

nvidia 10126 224 42 35 0 27 n/a

Table 5: Number of lines changed in order to enable SafeDrivefor each driver. All numbers are lines of code. “LOC
Modified” in “Deputy Changes” are number of lines with Deputyannotations and related changes. The next four
columns show numbers of lines with each category of annotations. “Recovery Changes” shows the number of lines
where trivial wrappers were added for recovery.

the previous number because not every changed line con-
tains a Deputy annotation. These changes are essential to
driver safety, and they amount to approximately 1–4% of
the total number of lines in a given driver. The last col-
umn shows additional recovery-related changes currently
needed in the driver code by the SafeDrive prototype.
These changes are boilerplate code placed at driver entry
points in the driver source files. We intend to generate
these wrappers automatically in the future.

The other kind of changes required are changes to the
kernel headers. This set of changes includes Deputy an-
notations for the kernel API as well as wrappers for func-
tions that are tracked by the SafeDrive runtime system.
Both types of changes must be written by hand; how-
ever, these changes are a one-time cost for drivers of a
given class. For the 4 classes of drivers we worked on,
a total of 1,866 lines in 112 header files were changed.
Casual inspection reveals that about half of the lines are
Deputy-related and that the rest are recovery-related. In
particular, there are 187 lines with bounds annotations,
260 lines with nullterm, 8 lines with tagged unions, and
140 lines with trusted code annotations.

5.3 Performance

The run-time overhead of SafeDrive is composed of sev-
eral parts, including run-time checks inserted by the
Deputy compiler, update tracking cost, and context sav-
ing cost. We measure the performance overhead of
SafeDrive by running several benchmarks with native
and SafeDrive-enabled drivers.

Table 6 shows results for these benchmarks on a dual
Xeon 2.4Ghz. In “TCP Receive”,netperf [18] is
run on another host and sends TCP streaming data to
the testing server (theTCP STREAM test). The socket
buffers are 256KB on both the sending and receiving
side, and 32KB messages are sent. “TCP Send” works
the other way around, with the testing server running
netperf and sending traffic. In “UDP Receive” and
“UDP Send”, UDP packets of 16 bytes are received/sent
(the UDP STREAM test). CPU utilization is measured

with thesar utility. CPU utilization maxes out at 50%,
probably because the driver cannot utilize more than one
CPU. The UDP tests show higher overhead probably due
to two reasons. First, the packets are much smaller, lead-
ing to more Deputy overhead overall. Second, less other
kernel code is involved in UDP processing compared to
TCP, amplifying SafeDrive’s overhead.

We tested theusb-storage driver with a 256MB
Sandisk USB2.0 Flash drive on a Thinkpad T43p lap-
top (2.13Ghz Pentium-M CPU). The “Untar” benchmark
simply untars a Linux 2.2.26 source code tar ball, which
is already on the drive, to the drive itself. The tar file is
82MB in size. After untarring finishes, the drive is im-
mediately unmounted to flush any data in the page cache.
CPU utilization is the average value over the whole pe-
riod. As can be seen from the results, the whole operation
finishes in the same amount of time, though SafeDrive’s
instrumentation increased CPU usage by 23%.

We also benchmarked two sound card drivers: the
intel8x0 sound driver for the built-in sound chip in
a Thinkpad T41 (1600Mhz Pentium-M CPU), and the
emu10k1 sound driver for a Creative Audigy 2 card
on a Pentium II 450Mhz PC. Both benchmarks used the
oprofile facility to capture how much time (in per-
centage of total CPU time) was spent in the kernel on be-
half of the sound driver while a 30-minute 44.1Khz wave
file was playing.aplay and the standardalsa sound
library were used for playback. Throughput is irrelevant
here because the sample rate is fixed.

Finally, we tested the open-source portion of the driver
distributed by NVidia for their video cards. These 10,296
lines of open-source code are the interface between the
kernel and a larger, proprietary graphics module which
we did not process because the source code is not avail-
able. We tested thenvidia driver on a Pentium 4 2.4
GHz machine with a GeForce4 Ti 4200 graphics card.
Table 6 shows the CPU usage of this driver while set-
ting up and tearing down an X Window session, as mea-
sured byoprofile. The instrumentation did not have
a measurable effect on the performance of thex11perf
graphics benchmarking tool, which is limited by hard-

Benchmark Driver Native Throughput SafeDrive Throughput Native CPU % SafeDrive CPU %
TCP Receive e1000 936Mb/s 936Mb/s 47.2 49.1 (+4%)
UDP Receive e1000 20.9Mb/s 17.4Mb/s (-17%) 50.0 50.0

TCP Send e1000 936Mb/s 936Mb/s 20.1 22.5 (+12%)
UDP Send e1000 33.7Mb/s 30.0Mb/s (-11%) 45.5 50.0 (+9%)

TCP Receive tg3 917Mb/s 905Mb/s (-1.3%) 25.4 27.4 (+8%)
TCP Send tg3 913Mb/s 903Mb/s (-1.1%) 18.0 20.4 (+13%)

Untar usb-storage 1.64MB/s 1.64MB/s 5.5 6.8 (+23%)
Aplay emu10k1 n/a n/a 9.10 9.64 (+6%)
Aplay intel8x0 n/a n/a 3.79 4.33 (+14%)
Xinit nvidia n/a n/a 12.13 12.59 (+4%)

Table 6: Benchmarks measuring SafeDrive overhead. Utilization numbers are kernel CPU utilization.

ware performance rather than by the driver.
The above results show that SafeDrive has rela-

tively low performance overhead, even for data-intensive
drivers. To compare with Nooks, consider thee1000
TCP send/receive tests. These tests are similar to ex-
periments discussed in the Nooks journal paper [34],
where the authors reported relative receive and send CPU
overheads of 111% and 46% respectively, both with 3%
degradation of throughput. This overhead is nearly an or-
der of magnitude higher than the overhead of SafeDrive
(rows 1 and 3 in Table 6), suggesting that the over-
head of cross-domain calls far outweighs the overhead
of Deputy’s run-time checks for these benchmarks.

6 Related Work

6.1 Enforcing Isolation with Hardware

Several projects have used hardware to isolate device
drivers from the rest of the system and to allow recov-
ery in the case of failure.

The Nooks project [32, 33] isolates device drivers
from the main kernel by placing them in separate hard-
ware protection domains called “nooks”. These protec-
tion domains share the same address space but have dif-
ferent permission settings for pages. A driver is permit-
ted to read all kernel data but only allowed to write to
certain pages. Cross-domain calls replace function calls
between the driver and the kernel, although the semantics
of the calls remain mostly similar.

Virtual Machine Monitors (VMMs) such as L4 [21]
and Xen [3, 13] isolate a driver using hardware protec-
tion. However, rather than placing a protection barrier
between a driver and the kernel, the VMM runs each
driver with its own kernel inside a separate virtual ma-
chine. This approach allows device drivers to be used
unchanged, and it allows one to use device drivers that
depend on different operating systems. Communication

between virtual machines is performed using a special-
purpose high-performance batched channel interface.

From a pure driver isolation standpoint, SafeDrive is
less secure than a VMM since it is possible for a driver
to manipulate the kernel via the API calls, privileged in-
structions, or simply tying up CPU resources by looping.
In the VMM case, however, a buggy driver can only cor-
rupt the driver’s local, untrusted kernel, which is isolated
from the trusted kernel behind a message-passing inter-
face. The SLAM project [2] looks at API usage valida-
tion, and in theory could close this gap when combined
with SafeDrive.

However, this caveat does not mean that SafeDrive is
able to catch fewer errors than a VMM. In fact, one ad-
vantage of SafeDrive is that its finer-grained checks are
able to detect errors within the driver and not just outside
it. Although hard to measure, this fine-grained error de-
tection reduces the likelihood of data corruption and is
very important in cases involving persistent data. For ex-
ample, a misbehaving disk driver in any of Xen, Nooks,
or SFI can corrupt data on disk before the fault is de-
tected. This exact behavior occurred with Nooks during
their fault injection experiments [33].

Another advantage of SafeDrive relative to these sys-
tems is performance. The additional domain crossings
required by the hardware approaches impose additional
costs. In all three hardware-based systems, one can gen-
erally expect the CPU overhead for data intensive device
drivers to be between 40% to 200% [21, 22, 32, 34].
This result contrasts with a typical CPU overhead of
less than 20% for SafeDrive, which incurs no addi-
tional cost for calls into or out of a driver. Of course,
it is not guaranteed that SafeDrive will always outper-
form hardware approaches: if crossings are rare and
checks are frequent then a hardware solution is likely
to outperform SafeDrive; however, our experiments sug-
gest that SafeDrive performs better in practice and that
SafeDrive’s performance is likely to improve further as
its optimizer improves.

6.2 Enforcing Isolation with Binary Instru-
mentation

Software-enforced Fault Isolation (SFI) [11, 29, 35] in-
struments extension binaries to ensure that no memory
operation can write outside of an extension’s designated
memory region. The instrumentation can take one of sev-
eral forms, depending on the desired tradeoff between
isolation and performance.

If reads are protected as well as writes (as they are
in SafeDrive), then typical performance overhead varies
between 17% and 144%, depending on the SFI imple-
mentation and the benchmarks being used. Although it
is hard to make direct performance comparisons against
results obtained from different test programs, we ex-
pect SafeDrive to exceed the performance of SFI, since
SafeDrive only needs to check memory accesses for
which the type checker is unable to verify correctness.

As with the hardware-based approaches, SFI only pre-
vents an extension from corrupting the system, and it
does not attempt to prevent a driver from corrupting it-
self or the device. Furthermore, these approaches require
a very clean kernel-driver interface in order to ensure that
all data passed between the kernel and the driver can be
checked at run time [11].

6.3 Enforcing Isolation with a Language

A number of research projects have attempted to enforce
memory safety in C programs at source level instead of
at binary level. CCured [24], a predecessor to Deputy,
used a whole-program analysis to classify pointers ac-
cording to their use, and then it altered data structures
and code to provide low-cost run-time memory safety
checks. Unfortunately, CCured made significant changes
to the program’s data structures, making it difficult to ap-
ply CCured to one module at a time. Another source-
level tool is the Cyclone [19] language, which is a safe
alternative to the C language that has been used to write
safe kernel-level code [1]. However, like CCured, Cy-
clone requires a large amount of manual intervention to
port existing drivers when compared to Deputy. Neither
CCured nor Cyclone supporta priori data layouts, which
are a prerequisite for extensions with predefined APIs
and data structures. Finally, Yong and Horwitz [38] use
static analysis to insert efficient buffer overflow checks;
however, they do not address memory safety in general,
and they provide relatively coarse-grained checks.

The major advantage of the Deputy type system over
these other source-level approaches is that Deputy allows
the programmer to describe pointer bounds in terms of
other variables or fields in the program, and thus Deputy
can leave data layout and APIs unchanged. A related
project at Microsoft uses the SAL annotation language

and the ESPX modular annotation checker in order to
find buffer overflows [14]. Although SAL can describe
relationships between variables, it cannot describe rela-
tionships between structure fields, and it does not sup-
port tagged union types. Also, ESPX is a static analysis,
which means that problematic code is simply left unver-
ified; in contrast, Deputy inserts run-time checks where
static analysis is insufficient.

There are also a number of related projects that al-
low types to refer to program data, including the Xanadu
language [37] and Hickey’s very dependent function
types [16]. However, these projects have a number of
restrictions on mutable data, which Deputy addresses us-
ing run-time checks. Also, Harren and Necula [15] de-
veloped a similar framework for assembly language in
which dependencies can occur between registers or be-
tween structure fields.

Type qualifiers represent another area of related work.
CQual [12, 20] allows programmers to add custom type
qualifiers such asconst oruser/kernel, using an in-
ference algorithm to propagate these qualifiers through-
out the program. Semantic type qualifiers [8] builds on
this work by allowing qualifiers to be proved sound in
isolation. Compared to this work, Deputy’s annotations
are more expressive (since annotations can refer to other
program data) and correspondingly more difficult to in-
fer. Although Deputy provides a number of features for
inferring or guessing annotations, it relies more heav-
ily on programmer-supplied annotations than these other
type qualifier tools. Finally, Privtrans [6] allows the pro-
grammer to specify privileged operations and automati-
cally separates a program into a privileged process and
non-privileged process, improving security.

There are operating systems built mainly with type-
safe languages, such as Singularity [17], JavaOS [23],
and the Lisp Machine OS [30]. These operating sys-
tems naturally have few memory-safety problems, and
as processor speed increases, the performance penalty of
these languages become less of a concern. While this
approach will be important in building future operating
systems, we believe that current commodity operating
systems such as Windows and Linux, which are written
mainly in C and C++, will be in wide use for many years.
SafeDrive will be useful both in improving the reliabil-
ity of these existing operating systems and in providing
a transition to future type-safe operating systems.

6.4 Fault Tolerance for Applications

In addition to the issue of how a device driver should
be isolated from the rest of the system, there is also the
largely orthogonal issue of how the system should re-
cover when a driver failure is detected. Both the orig-
inal Nooks paper [33] and SafeDrive provide isolation,

release of resources, and restart of the driver.
A later Nooks paper [32] showed how to useshadow

drivers to restore the session state of applications that
were using the driver. We expect the shadow driver
technique to work without significant modification with
SafeDrive, and thus we do not address this issue further.

Vino [28], which isolates drivers using SFI, executes
each driver request inside a transaction that can be
aborted and retried on failure. Another related technique
is Microreboot [7], which is used to build rebootable
components in large enterprise systems. Session restora-
tion is achieved by programming the components against
a separate session state storage that persists over compo-
nent restarts.

7 Conclusion

We have presented SafeDrive, a system that uses
language-based techniques to detect type safety errors
and to recover from such errors in device drivers writ-
ten in C. The checking in SafeDrive is fine-grained,
which is critical because it not only protects the ker-
nel from misbehaving drivers, but also helps prevent the
driver from corrupting persistent data or kernel state.
SafeDrive requires few changes to the kernel or drivers,
and experiments show that SafeDrive incurs low over-
head (normally less than 20%) and successfully prevents
all 44 crashes due to randomly injected errors for one
driver. Overall, we hope that this work shows that we
can achieve the safety of high-level, type-safe languages
without abandoning existing C code.

Acknowledgments

We thank the anonymous reviewers and our shepherd
Dawn Song for their useful suggestions and comments
on the paper. We also thank David Gay for insightful
discussion.

Notes

1This requirement is slightly different from the officialstrlcpy
specification, sincedst is required to be null-terminated on entry as
well as on exit. However, in practice, establishing this invariant on
entry should not require much, if any, additional effort on the part of
client code.

References

[1] A NAGNOSTAKIS, K., GREENWALD, M., IOANNIDIS, S., AND

M ILTCHEV, S. Open packet monitoring on FLAME: Safety,
performance and applications. InProceedings of the 4rd Inter-
national Working Conference on Active Networks (IWAN 2002)
(2002).

[2] BALL , T., MAJUMDAR, R., MILLSTEIN , T. D., AND RAJA-
MANI , S. K. Automatic predicate abstraction of C programs.

In SIGPLAN Conference on Programming Language Design and
Implementation(2001).

[3] BARHAM , P., DRAGOVIC, B., FRASER, K., HAND , S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND

WARFIELD, A. Xen and the art of virtualization. InProceedings
of the 19th ACM Symposium on Operating Systems Principles
(2003).

[4] BERSHAD, B., ANDERSON, T., LAZOWSKA, E., AND LEVY,
H. Lightweight remote procedure call. InProceedings of the
12th ACM Symposium on Operating Systems Principles(1989).

[5] BOS, H., AND SAMWEL , B. Safe kernel programming in the
OKE. In Open Architectures and Network Programming Pro-
ceedings(2002).

[6] BRUMLEY, D., AND SONG, D. Privtrans: Automatically parti-
tioning programs for privilege separation. InProceedings of the
13th USENIX Security Symposium(2004).

[7] CANDEA , G., KAWAMOTO , S., FUJIKI , Y., FRIEDMAN , G.,
AND FOX, A. Microreboot — a technique for cheap recovery.
In Symposium on Operating System Design and Implementation
(2004).

[8] CHIN , B., MARKSTRUM, S., AND M ILLSTEIN , T. Semantic
type qualifiers. InProceedings of the ACM Conference on Pro-
gramming Language Design and Implementation(2005).

[9] CHOU, A., YANG, J., CHELF, B., HALLEM , S.,AND ENGLER,
D. An empirical study of operating system errors. InProceedings
of the 18th ACM Symposium on Operating Systems Principles
(2001).

[10] CHRISTMANSSON, J.,AND CHILLAREGE, R. Generation of an
error set that emulates software faults — based on field data.In
Proceedings of the 26th IEEE International Symposium on Fault
Tolerant Computing(1996).

[11] ERLINGSSON, Ú., ABADI , M., VRABLE, M., BUDIU , M., AND

NECULA, G. C. XFI: Software guards for system address spaces.
In Symposium on Operating System Design and Implementation
(2006).

[12] FOSTER, J. S., FAHNDRICH, M., AND A IKEN , A. A theory
of type qualifiers. InProceedings of the ACM Conference on
Programming Language Design and Implementation(1999).

[13] FRASER, K., HAND , S., NEUGEBAUER, R., PRATT, I.,
WARFIELD, A., AND MARK WILLIAMSON . Safe hardware ac-
cess with the Xen virtual machine monitor. InProceedings of the
1st Workshop on Operating System and Architectural Supportfor
the on demand IT InfraStructure (OASIS 2004)(2004).

[14] HACKETT, B., DAS, M., WANG, D., AND YANG, Z. Modu-
lar checking for buffer overflows in the large. Technical Report
MSR-TR-2005-139, Microsoft Research, 2005.

[15] HARREN, M., AND NECULA, G. C. Using dependent types to
certify the safety of assembly code. InProcedings of the 12th
international Static Analysis Symposium (SAS)(2005).

[16] HICKEY, J. Formal objects in type theory using very dependent
types. InProceedings of the 3rd International Workshop on Foun-
dations of Object-Oriented Languages(1996).

[17] HUNT, G., LARUS, J. R., ABADI , M., A IKEN , M., BARHAM ,
P., FAHNDRICH, M., HAWBLITZEL , C., HODSON, O., LEVI ,
S., MURPHY, N., STEENSGAARD, B., TARDITI , D., WOBBER,
T., AND ZILL , B. D. An overview of the Singularity project.
Tech. rep., Microsoft Research, 2005.

[18] INFORMATION NETWORKSDIVISION , H.-P. C. Netperf: A net-
work performance benchmark. http://www.netperf.org.

[19] JIM , T., MORRISETT, G., GROSSMAN, D., HICKS, M., CH-
ENEY, J., AND WANG, Y. Cyclone: A safe dialect of C. In
USENIX Annual Technical Conference(2002).

[20] JOHNSON, R., AND WAGNER, D. Finding user/kernel pointer
bugs with type inference. InUSENIX Security Symposium(2004).

[21] LEVASSEUR, J., UHLIG , V., STOESS, J., AND GOTZ, S. Un-
modified device driver reuse and improved system dependability
via virtual machines. InSymposium on Operating System Design
and Implementation(2004).

[22] MENON, A., SANTOS, J. R., TURNER, Y., G. (JOHN) JANAKI -
RAMAN , AND ZWAENEPOEL, W. Diagnosing performance over-
heads in the Xen virtual machine environment. InProceeding of
the 1st ACM/USENIX Conference on Virtual Execution Environ-
ments (VEE 2005)(2005).

[23] M ITCHELL , J. G. JavaOS: Back to the future (abstract). InSym-
posium on Operating System Design and Implementation(1996).

[24] NECULA, G. C., CONDIT, J., HARREN, M., MCPEAK , S.,AND

WEIMER, W. CCured: Type-safe retrofitting of legacy software.
ACM Transactions on Programming Languages and Systems 27,
3 (2005).

[25] NECULA, G. C., MCPEAK , S., AND WEIMER, W. CIL: Inter-
mediate language and tools for the analysis of C programs. In
International Conference on Compiler Construction(2002).

[26] NG, W. T., AND CHEN, P. M. The systematic improvement
of fault tolerance in the Rio file cache. InSymposium on Fault-
Tolerant Computing(1999).

[27] PATEL , P., WHITAKER , A., WETHERALL, D., LEPREAU, J.,
AND STACK , T. Upgrading transport protocols using untrusted
mobile code. InSOSP(2003).

[28] SELTZER, M. I., ENDO, Y., SMALL , C., AND SMITH , K. A.
Dealing with disaster: Surviving misbehaved kernel extensions.
In Symposium on Operating System Design and Implementation
(1996).

[29] SMALL , C., AND SELTZER, M. MiSFIT: A tool for construct-
ing safe extensible C++ systems. InProceedings of the 3rd
USENIX Conference on Object-Oriented Technologies (COOT
1997)(1997).

[30] STALLMAN , R., WEINREB, D., AND MOON, D. The Lisp Ma-
chine Manual. Massachusetts Institute of Technology, 1981.

[31] SULLIVAN , M., AND CHILLAREGE, R. Software defects and
their impact on system availability — a study of field failures
in operating systems. InProceedings of the 21st International
Symposium on Fault-Tolerant Computing(1991).

[32] SWIFT, M. M., ANNAMALAI , M., BERSHAD, B. N., AND

LEVY, H. M. Recovering device drivers. InSymposium on Op-
erating System Design and Implementation(2004).

[33] SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M. Improving
the reliability of commodity operating systems. InProceedings
of the 19th ACM Symposium on Operating Systems Principles
(2003).

[34] SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M. Improving
the reliability of commodity operating systems.ACM Transac-
tions Computer Systems 23, 1 (2005).

[35] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM ,
S. L. Efficient software-based fault isolation.ACM SIGOPS
Operating Systems Review 27, 5 (1993).

[36] WEIMER, W., AND NECULA, G. C. Finding and preventing run-
time error handling mistakes. InProceedings of the ACM Con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications(2004).

[37] X I , H. Imperative programming with dependent types. InPro-
ceedings of 15th IEEE Symposium on Logic in Computer Science
(2000).

[38] YONG, S. H.,AND HORWITZ, S. Protecting C programs from
attacks via invalid pointer dereferences. InProceedings of the
10th ACM SIGSOFT International Symposium on Foundations of
Software Engineering(2003).

