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Abstract
DRAM is facing severe scalability challenges in sub-45nm tech-
nology nodes due to precise charge placement and sensing hur-
dles in deep-submicron geometries. Resistive memories, such as
phase-change memory (PCM), already scale well beyond DRAM
and are a promising DRAM replacement. Unfortunately, PCM is
write-limited, and current approaches to managing writes must de-
commission pages of PCM when the first bit fails.

This paper presents dynamically replicated memory (DRM),
the first hardware and operating system interface designed for
PCM that allows continued operation through graceful degrada-
tion when hard faults occur. DRM reuses memory pages that con-
tain hard faults by dynamically forming pairs of complementary
pages that act as a single page of storage. No changes are required
to the processor cores, the cache hierarchy, or the operating sys-
tem’s page tables. By changing the memory controller, the TLBs,
and the operating system to be DRM-aware, we can improve the
lifetime of PCM by up to 40x over conventional error-detection
techniques.

Categories and Subject Descriptors B.3 [Hardware]: Memory
Structures; B.8 [Hardware]: Performance and Reliability

General Terms Design, Reliability, Performance

Keywords Phase-change memory, write endurance

1. INTRODUCTION
For the past forty years, DRAM has served as a fundamental build-
ing block of computer systems. Over this time frame, memory
capacity has increased by six orders of magnitude, with corre-
sponding reductions in feature size. Unfortunately, as semiconduc-
tor memories reach densities where individual atoms and electrons
may affect correctness, atomic-level effects are threatening to bring
a near-term end to DRAM scaling. For example, DRAM cells re-
quire mechanisms for precise placement and sensing of charge on
an integrated trench capacitor—mechanisms that are becoming in-
creasingly difficult to control reliably at deep-submicron geome-
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tries. The 2009 edition of the ITRS [8] points out growing concerns
over DRAM scalability, indicating that no known manufacturable
solutions exist beyond 40nm. In response, the industry is turning its
attention to resistive-memory technologies such as phase-change
Memory (PCM). PCM is one of the most promising technologies
to replace DRAM because functional PCM prototypes have been
demonstrated at 22nm, and the ITRS projects PCM to scale to
9nm [8, 22].

PCM’s greatest limiting factor is its write endurance: at the
65nm technology node, a PCM cell is expected to sustain 108

writes before the cell’s heating element breaks and induces a stuck-
at fault, where writes are no longer able to change the value stored
in the PCM cell. Moreover, as PCM scales to near-atomic dimen-
sions, variability across device lifetimes increases, causing many
cells to fail much sooner than in systems with lower variation. Un-
fortunately, existing solutions to managing hard errors in DRAM
and Flash memory technologies do not map easily to PCM. Al-
though recent research has investigated PCM wear leveling [20,
21, 33] and techniques to limit the need to write to PCM [11, 33],
researchers have not yet focused on what happens after the first bit
of PCM fails.

This paper presents dynamically replicated memory (DRM), a
new technique that allows for graceful degradation of PCM capac-
ity when hard failures occur. DRM is based on the idea of repli-
cating a single physical page over two faulty, otherwise unusable
PCM pages; so long as there is no byte position that is faulty in
both pages, every byte of physical memory can be served by at
least one of the two replicas. Redundant pairs are formed and dis-
mantled at run time to accommodate failures gracefully as faults
accrue. The key idea is that even when pages have many tens or
even hundreds of bit failures, the probability of finding two com-
patible real pages—and thus reclaiming otherwise decommissioned
memory space—remains high.

DRM’s error detection mechanism leverages PCM’s failure
modes and timing constraints to detect faults with 100% accuracy
regardless of the bit failure rate or the number of errors in each
data block, for the same storage overhead as standard SECDED
error-correcting codes. Recovery is accomplished through a sim-
ple hardware-software interface that guarantees no data loss upon
failures, while requiring zero modifications to the cores, to the on-
chip cache subsystem, or to virtual-to-physical page tables. The
paper also describes a low overhead memory request replication
and scheduling policy that delivers dramatically better performance
than a baseline, unreplicated system when failures are rare, and that
minimizes performance overhead at the end of the device lifetime.



The time to failure of PCM cells can be represented by a nor-
mal distribution, using the coefficient of variation (CoV) as a pa-
rameter to determine the variability. If we measure the lifetime of a
memory array by the point at which 50% of the capacity has been
depleted, then dynamic replication increases the halfway lifetime
of PCM devices by 1.2x, 2.7x, and over 40x for low (CoV = 0.1),
medium (CoV = 0.2), and high (CoV = 0.3) variance cases, respec-
tively. Low-overhead techniques to reuse blocks with hard faults
can thus provide enormous lifetime increases as variance increases
in denser non-volatile memories; indeed, this technique may even
be necessary to permit scaling to higher densities.

2. BACKGROUND AND MOTIVATION
The continued scaling of semiconductor memory technologies is
increasingly affected by fundamental limits. Recent work [11] dif-
ferentiates charge memories (such as DRAM and Flash memory),
which use electric carriers to store the state of a bit, from resis-
tive memories, which use atomic arrangements to set the resis-
tance of a memory cell to store information. Resistive memories,
which include phase-change Memory (PCM), Ferroelectric RAM
(FeRAM), Spin-Torque Transfer Magnetoresistive RAM (STT-
MRAM), and Resistive RAM (RRAM), the latter of which includes
memristors, are all candidates to succeed charge memories if and
when charge memories reach fundamental limits. The ITRS projec-
tion predicts difficulties in scaling DRAM past 40nm, and the SIA
Roadmap projects difficulties scaling Flash past the 20nm node;
at 21 nanometers, small numbers of electrons (e.g., 10) tunneling
from the floating gate will cause a Flash cell to lose its state.

Resistive memories have properties that are different from those
of current high-volume charge memories. First, they are typically
non-volatile, since the state of the cells is held by the arrange-
ment of atoms as opposed to flightier electrons. Second, they are
typically byte-addressable, since competitive densities are possible
without the block-erase requirements of NAND and NOR Flash
memory and without the block read requirement of NAND Flash.
Third, they have lifetimes which are initially projected to be even
higher than Flash in terms of the number of writes before failure.
Fourth, writing to these technologies is typically more expensive,
in terms of latency and/or energy, than a charge memory at a given
technology node, since moving or aligning atoms is more expensive
than moving electrons across an insulator (Flash), which in turn is
more expensive than moving electrons onto a capacitor (DRAM).

Given the scaling trends, it is possible (and perhaps likely) that
resistive memories eventually replace most of the semiconductor
memories in systems, including those residing on the memory bus.
Thus, future systems should provide the following capabilities: (1)
sophisticated but low-level wear-leveling algorithms that do not
require management by an I/O storage controller, (2) mechanisms
to reduce the number of writes to memory when possible, and
(3) mechanisms to gracefully handle cells that fail permanently
while programs are running. The first two capabilities have been
heavily studied, whereas this paper focuses on the third requirement
for future memory systems. The implementation strategy used to
handle hard faults depends on the specific memory technology,
fault model, and error-correction codes. This paper develops a fault
handling architecture assuming a phase-change memory system, a
run-time hard fault model, and standard ECC support, all described
below.

2.1 Phase-Change Memory
Phase-change memory, first proposed in 1967, is the resistive mem-
ory that is most likely closest to high-density commercial deploy-
ment. PCM is being developed commercially by several compa-
nies, including Samsung and Numonyx, and has been the subject

of considerable recent interest in the architecture research commu-
nity [2, 11, 20, 21, 29, 31, 33].

2.1.1 Memory Cells and Array Architecture
PCM cells are formed by sandwiching a phase-change material (of-
ten a chalcogenide such as Ge2Sb2Te5) between two electrodes
with a resistive element acting as a Joule heater between the chalco-
genide and one of the electrodes. The chalcogenide can exist in
a “melted” (amorphous) state with relatively unordered atoms, or
a “frozen” (crystalline) state with ordered atoms. By running a
low current through the device stack, the resistive drop across the
chalcogenide can be measured; the amorphous state has a higher
resistance than the crystalline state. The cell can be written by run-
ning a high current through the cell, heating it up to 1000◦K, and
then cooling it quickly to leave it in the amorphous state (“0”) or
slowly to allow the crystals to grow and place it in the set position
(“1”). The memory array architectures are similar to conventional
DRAM technologies, except that the writes tend to be narrower due
to high current densities, and the sense amplifiers can be shared
among more banks since PCM cells can be actively driven to be
read, as opposed to reading an effervescent charge from a DRAM
capacitor.

2.1.2 Endurance, Fault Models, and Wear-Leveling
Potential failure mechanisms for PCM have been extensively stud-
ied and characterized in the literature, including radiation induced
transient faults [3, 17, 18, 26], proximity effects such as read or
write disturbances [7, 10, 19, 26], data retention issues [7, 10, 19,
26], and hard errors due to finite write endurance [2, 3, 7, 9–11, 17–
21, 26]. While the first three do not represent a cause for concern
in practice, hard failures due to write cycling have historically been
one of the most serious impediments to successful commercial de-
ployment of PCM technology.

Radiation Effects. PCM cells are not susceptible to radiation
induced transient faults in the foreseeable future, due to the high
energy required to change their state [17, 18, 26]. In addition,
unlike the case of DRAM where bitlines are precharged and are
left floating to sense an effervescent charge from an integrated
trench capacitor, PCM cells are actively driven during reads; this
makes the bitlines immune to radiation effects. Soft errors can still
manifest on row buffers and on interface logic (e.g., I/O gating
circuitry), but these can be protected in a straightforward way by
applying parity or ECC prior to buffering the data [26], exchanging
parity bits during bus transmissions [17], and reissuing requests in
the case of a failure. No additional storage within the PCM data
array is required for protection against transient faults.

Proximity Effects. Since PCM relies on resistive (ohmic) heating
at high temperatures (1000◦K) to program a cell, it is important to
ensure that nearby cells do not undergo unintentional bit flips dur-
ing a write operation. Fortunately, thermal isolation between PCM
cells has been shown to be highly effective and scalable, reducing
cross-cell heat contamination sufficiently that write disturbance of
adjacent cells is not considered a problem in current or future tech-
nology generations [10, 19, 26]. Experimental results confirm that
temperatures decrease sharply with distance, falling from 1000◦K
near a programmed heating element to less than 350◦K within
80nm of the heater [10].

Data Retention. Although the expected data retention time of
an isolated PCM cell at room temperature is in excess of 300
years, retention time can decrease appreciably due to environmen-
tal conditions in a large, dense, and heavily exercised memory ar-
ray [7, 10, 19, 26]. In PCM, the amorphous phase of the GST stack
represents a meta-stable material state with respect to the stable



crystalline phase, making it possible for a relatively modest amount
of electrical or thermal energy to accelerate data loss. Neverthe-
less, even under a worst-case, sustained write cycling scenario at
430◦K, retention times greater than 10 years have been demon-
strated [10, 19]; thus, performing a highly infrequent (e.g., once a
year) “refresh” operation would suffice to guarantee data retention.

Write Endurance. The major fault model for PCM cells is per-
manent failure of a cell, which occurs when the heating element
detaches from the cell material due to the continued thermal expan-
sion and contraction resulting from writes [9, 11]. Permanent faults
occur in individual cells, where the bit in the cell becomes “stuck
at” a fixed one or zero when the heater detaches. Beyond this point,
it becomes impossible to alter the state of the cell, but the cell con-
tents can still be reliably read [7, 10]. In current technologies, cells
are expected to be able to sustain 107 to 108 writes on average be-
fore failing, and the number of writes before failure is expected to
increase as PCM geometries are shrunk. However, the reliability of
a large memory array is typically determined by the endurance of
a relatively small number of weak cells, which can reduce the per-
ceived lifetime—and thus, the product specification—of a 128Mb
array to as low as 106 write cycles, even with aggressive process
and cell programming optimizations [7].

This paper assumes a fault model where hard, permanent bit
failures occur in individual cells with no spatial correlation (i.e.,
a bit failure in one position has no implications for the spatial
position of the next bit failure on the chip). These assumptions are
supported by private communications with Numonyx [6], one of
the largest PCM developers, which confirm the following reliability
characteristics: (1) PCM failure modes result in reliably stuck bits
that are uniformly distributed across all bits cycled, and these errors
can be detected at the time the cells are written by reading the cells
after each write to ensure that the stored data are correct; (2) no
large systematic effects are observed within a die, and in general,
if such correlations were observed, they would likely be artifacts of
such positional effects as wordline and bitline location within the
array, which would be compensated and trimmed using additional
circuitry as standard practice; and (3) expected cell endurance at
65nm is 108 writes [6, 18].

2.2 Error Correcting Codes
Error correcting codes (ECC) add correction bits to a group of data
bits to detect and/or correct errors. For these codes to be effective,
they must tolerate errors in the ECC bits as well. These codes are
often distinguished by specifying the number of bit errors they
can detect and the number of errors they can correct. Parity is the
simplest ECC scheme, which adds one bit to a data block to ensure
that the number of set bits is always even. That way, if any bit is
flipped, the number of set bits will be odd and a single bit error will
be detected; thus, parity detects one error and can correct none.

SECDED ECC stands for single-error correction, double-error
detection, and is the most common ECC code that can correct er-
rors. It is highly useful in technologies vulnerable to soft errors,
since a single-bit soft error can be detected and restored in place.
In semiconductor memories, the (72, 64) Hamming code is widely
used for SECDED ECC, which adds eight ECC bits to each 64-bit
word. Higher-order corrections involving Reed-Solomon codes are
possible, but they require both higher bit overhead and higher com-
putation overhead. Since this paper focuses on errors in memories
that may include non-block storage such as physical memory, we
assume only low-overhead ECC codes, such as Hamming codes,
that are tractable for byte-addressable memories.

Unfortunately, existing error correction schemes for DRAM
and NAND Flash are inappropriate for PCM. For example, when
applied in the context of hard errors, SECDED ECC requires the
operating system to decommission an entire physical page as soon

as the first (correctable) bit error in that page manifests itself. This
approach may be acceptable if failures are rare and start to accrue
near the end of the device’s life; however, if failures begin to accrue
early due to process variations, this overly conservative strategy
causes large portions of memory to quickly become unusable.

MLC NAND Flash, on the other hand, relies on stronger ECC
mechanisms based on Reed-Solomon codes; these codes are able to
detect and correct many tens of failures over a large, 16KB block
before the device has to be decommissioned. Unfortunately, Reed-
Solomon codes require expensive polynomial division calculations
that are difficult to implement at memory bus speeds [13]. More
importantly, these codes require calculating and updating a large
memory block (e.g., 16KB) on each write; while this overhead is
naturally amortized over the block-oriented NAND Flash interface,
it is inappropriate for a byte-addressable device such as PCM.

In all, the impending end of DRAM scaling in the post-40nm
era, coupled with the inherent variability of PCM cell lifetime
at near-atomic feature sizes, requires us to reconsider memory-
system reliability from the ground up, and demands error tolerance
schemes that go far beyond the capabilities of existing techniques
used in NAND Flash or DRAM.

3. DYNAMIC REPLICATION: RECYCLING
FAULTY PAGES

We first provide an overview of a dynamically replicated PCM
subsystem (Section 3.1). We then describe the necessary hardware
(Section 3.2) and OS (Section 3.3) support to enable dynamic repli-
cation, and we provide the theoretical underpinnings of the pro-
posed replication algorithm (Section 3.4). We present our discus-
sion in the context of a DDRx-compatible PCM interface (similar
to [11]); dynamic replication with other memory interfaces is pos-
sible and is left for future work.

3.1 Structure and Operation of Dynamically Replicated
Memory

To facilitate dynamic replication, we introduce a new level of in-
direction between the system’s physical address space and PCM in
the form of a real address space (Figure 1). Each page in the phys-
ical address space is mapped to either one pristine real page with
no faults, or to two faulty but compatible real pages—pages that
have no failures in the same byte position, and can thus be paired
up to permit reads and writes to every location in the corresponding
physical page.

Virtual 
Address Spaces

Physical 
Address Space

Real 
Address Space

Recorded in 
Page Tables

Recorded in 
Real Table

Figure 1. Example of a dynamically replicated physical address space.



Figure 2 illustrates the concept of compatibility by presenting
two pairs of real pages, one compatible and the other incompatible.
In each pair, the dark colored page (P0 or P2) represents the
primary copy, and the light colored page (P1 or P3) is a backup
page. In the figure, pages P0 and P1 are compatible since there is
no byte that is faulty in both of them. If a single physical page were
to be replicated on P0 and P1, P0 could serve requests to bytes B0

and B7, P1 could satisfy accesses to B4, and accesses to all other
bytes could be served by either page; in this way, a single physical
page could be represented by and reconstructed from two faulty,
unreliable real pages. Unlike P0 and P1, however, pages P2 and P3

both have a fault in byte position B4, and are thus incompatible:
if P2 and P3 were paired and a physical page mapped onto them,
it would not be possible to read or write the data in B4. The key
idea is that, even when pages have many tens or even hundreds of
bit failures, the probability of finding two compatible real pages—
and thus reclaiming otherwise decommissioned memory space—
remains high.

X

X

X

Compatible Incompatible

B0
P0 P1

B4

B7

X

X

X

B0
P2 P3

B4

B7

Figure 2. Example of compatible (left) and incompatible (right) pages.

Unlike virtual-to-physical mappings that need to be tracked on
a per-process basis, the physical-to-real address mappings can be
stored in a single, global physical-to-real table kept in PCM. A
page is indexed by its physical page number, and each entry has two
64-bit fields that list the real page numbers of the two replicas asso-
ciated with the physical page. Using 4 KB pages, this design makes
it possible to address up to 16 TB of “real” PCM storage. While a
physical-to-real table is not strictly necessary for correctness, this
extra level of indirection is nevertheless desirable to achieve rea-
sonable performance and to reduce storage overheads. In the ab-
sence of a physical-to-real table, standard virtual-to-physical page
tables would need to be modified to store up to two physical ad-
dresses for each virtual address, and when a failure is detected at a
physical address, the operating system would need to search every
entry of every process’s page table to find and update the relevant
entries. Since we have as many page tables as we have processes,
and since there can be an arbitrarily large number of virtual map-
pings to a single physical address, this update can be both com-
plex and slow. The additional layer of indirection provided by the
physical-to-real table eliminates this problem by giving us a table
with two important properties: first, there is only one such table
per PCM device (not per process), and second, there is at most one
physical mapping for any given real page. Because the size of the
physical address space is bounded by the size of the real address
space, this table can be stored as a single contiguous array in PCM.

This additional layer of indirection is not entirely new; virtual
machines use shadow page tables to manage the mapping between
a virtualized operating system and the real page tables kept by the
host OS or hypervisor. However, just as with virtual machines,
the additional layer of indirection means that on a TLB miss the
hardware page walker must first walk the page table, and then index
into the physical-to-real table to put the real addresses into the TLB.
Since the second lookup requires only a single access (indexing into
the table) rather than an additional page table walk, the additional

overhead is considerably lower than similar overheads found in
shadow-page tables used for virtualization.

Because PCM can be used for non-volatile storage, the pairs
described by the physical-to-real table must persist along with the
data in the pages it points to; thus, the physical-to-real table must
also be kept in PCM. However, because the table is used for the
physical-to-real translation, we cannot use our page-pairing scheme
for the table itself. Instead, we store three independent replicas of
the table. In cases where the entry in the primary copy of the table is
faulty, the system tries the second replica and then the third replica;
if all three replicas of an entry are bad, the corresponding physical
page is decommissioned. Since entries in the table are updated only
when a page is remapped to a new pair, they take substantially less
wear than the rest of PCM. Three copies of the physical-to-real
table means 24 bytes for every 4 KB page, or about 0.59% of the
available PCM; for 4 GB of PCM, three copies of the physical-to-
real table occupy approximately 24MB of space.

To successfully retrieve data from PCM, hardware must track
(and in some cases, access) both real addresses for each (cache-
block sized) memory reference, and the OS needs to ensure that
no incompatible pages are paired at each point in time. Section 3.2
discusses the necessary hardware and OS support to accomplish
this.

3.2 Hardware Support
3.2.1 Tracking Real Addresses
Dynamic replication of system memory requires the memory con-
troller to know the real addresses for both replicas associated with
each physical location when accessing PCM. To determine these
real addresses, the size of each entry in the data array of the d-TLB
is adjusted to accommodate two 32-bit virtual-to-real mappings.
On a d-TLB miss, the hardware page walker first accesses the con-
ventional page table to locate the relevant page table entry (PTE),
which contains a physical address, and then it obtains the corre-
sponding real address(es) by indexing into the physical-to-real ta-
ble. Although this approach doubles the area of the data array for
the d-TLB, both the number of tags and the width of each tag in
the TLB remains unchanged. The associative tag lookup typically
dominates TLB lookup time, and consequently, doubling the size
of the data array has a negligible impact on the overall TLB access
time.1

Although the TLB records the real addresses of both the pri-
mary and the backup pages, each level of the cache hierarchy still
stores only a single, fault-free copy of the data to avoid potential
coherence problems and to prevent wasting precious cache space.
If the caches are virtual, then a single TLB access is performed on a
last-level cache miss to obtain the relevant virtual-to-real mappings.
On the other hand, if the caches use real addresses for tagging, the
data is always stored using the tag associated with the primary real
page. A TLB lookup is performed prior to accessing the cache, and
on a last-level cache read miss, the two real addresses are sent to the
memory controller. However, handling writebacks with real tags re-
quires additional support since the cache does not track the address
of the backup page. To recover the address of the backup cache
block, the TLB needs to be augmented with one additional asso-
ciative port to search the backup address, using the primary real
address as a tag. Our design assumes virtual L1 and L2 caches.

3.2.2 Detecting Faults
Historically, DRAMs with high reliability requirements have used
single-error correction, double-error detection (SECDED) ECC to

1 At 45nm, delay estimates from CACTI [28] indicate a 2.6% increase in
access time when the size of the data array in a 64-entry, fully associative
TLB is doubled.



combat failures. This choice is justified by the fact that the pri-
mary failure mechanism of concern in DRAMs is transient faults:
the memory controller can periodically scrub DRAM and correct
any errors flagged by SECDED ECC, and the scrubbing period
can be adjusted to contain the probability of an unrecoverable error
(double-bit or more errors accumulating in a codeword) within ac-
ceptable bounds. Being able to tolerate many tens or even hundreds
of failures per page requires an error detection mechanism that goes
far beyond the capabilities of conventional SECDED ECC.

In DRM, errors are detected by having the memory controller
issue an additional read after each write to determine whether the
write succeeded. The key observation that makes this approach
practical is that writes are much more expensive (in terms of both
latency and energy) compared to reads in PCM. If a “checker”
read is issued after each array write to PCM, the read latency is
largely amortized over the write latency, with only a small impact
on overall system performance.

1 0 1 0 0 1 0 0 0

Intentional Bit Flip Parity

FaultFault

Detectable

0 0 1 0 0 1 0 0 0

Parity

FaultFault

Undetectable

Figure 3. Example of an undetectable error (left) and the intentional bit flip
performed to make it detectable (right).

If the checker read determines that the write did not succeed,
the fault has to be recorded so that future reads from the same
location do not return erroneous values. To do so, we associate a
single parity bit with every byte in PCM, and on every write, the
memory controller sets this bit so that the total number of ones
in the codeword (parity plus data) is even at each point in time.
(This results in a 12.5% storage overhead, which is equivalent to
the storage cost of implementing conventional SECDED ECC.) If
the checker read indicates that data was written to PCM incorrectly,
then the controller checks the parity of the resulting codeword. If
the parity bit has correctly flagged the error, then we are assured
that future reads issued to this location will be able to determine
that the location is faulty and use the backup page instead. If the
parity bit did not correctly flag the error, then the memory controller
intentionally flips one of the bits in the block, re-writes the data,
and issues another checker read (Figure 3). In this way, the desired
inconsistency between the parity bit and the parity of the block is
generated. The controller attempts this bit flip as many times as
needed until parity detects the fault, and if it cannot generate the
desired inconsistency, then the page must be discarded, as we will
discuss in the next section.

Once a location has been marked as faulty, the memory con-
troller attempts to write the data to the backup location for that
page, if it exists. If the backup page fails, then it too is marked as
faulty using the procedure described above, and then we invoke our
recovery mechanism, which is described next. If there is no such
backup page, we proceed straight to recovery.

3.2.3 Recovering from Faults
When a write fails on both locations in a given pair, or on any
location in a pristine page, the memory controller must detect the
fault via the checker read and initiate recovery by copying the data
to a new location in PCM.

To accomplish this task, the memory controller relies on an on-
chip data structure called the ready table, which contains a list of

real pages (or real page pairs) available to use when a write failure
occurs. The ready table is a 128-entry SRAM array co-located with
the controller’s scheduling queue. Each table entry contains space
for two 32-bit values indicating the real addresses for the pages
supplied by the operating system. These values can indicate either
a pair of pages or a single pristine page, in which case the second
value is 0xFFFFFFFF. The ready table is kept in volatile memory,
since it can be reconstructed at boot.

The ready table functions as a circular buffer that allows the
memory controller and the operating system to exchange pages.
The operating system places compatible pairs or pristine pages into
the ready table, and the memory controller consumes these pages
and replaces them with incompatible pages that must be re-paired.
To indicate which part of the table is which, the table contains a
memory controller pointer (mc) and an operating system pointer
(os). Entries from the mc pointer up to the os pointer (exclusive)
are ready for the memory controller to use, and entries from the
os pointer to the mc pointer (exclusive) are dead pages for the
operating system to handle. If both pointers point to the same
location, then all pairs are ready for the memory controller.

On a fault, the memory controller first signals all of the cores
to flush their pipelines and to stop fetching. It then gets the address
of the next available page from the ready table (either pristine or
paired), and starts copying the data from the old page to a new loca-
tion. Once this is done, the controller overwrites the ready table en-
try used in the transfer with the addresses of the page(s) where the
fault was observed (now obsolete) and increments the mc pointer.
If a second fault is encountered in the process of copying the data
to the new location, the controller increments the mc pointer with-
out replacing the entries (so that the bad pair will be recycled) and
retries the whole process with the next available entry in the ready
table.

Once the data is copied successfully, the controller initiates
L1 and L2 cache flushes (note that fetch is still stalled on all
cores at this point). This cache flush is necessary to ensure that
any data in the cache subsystem tagged with addresses to the old
page are correctly steered to the new page. The controller monitors
all writes in its transaction queue during the flushing period, and
performs such writes to their new, up-to-date locations. Once this
process is complete, the controller initiates a hardware page walk
to determine the physical address that was just remapped, and it
updates the contents of the physical-to-real table with the new
mapping. If additional failures occur while flushing the cache, the
same procedure is used to remap any additional failed pages.

If a real page is determined to be unrecoverable, either because
it has too many bit failures or because there was a location that
could not be correctly flagged as a failed location, then that page’s
index is not written back to the ready table for further processing
by the operating system. Since the operating system never sees the
failed page’s index, that page will be effectively decommissioned.

Finally, there are two cases that generate hard, unrecoverable
faults. First, if the mc pointer is equal to the os pointer after being
incremented, then we have run out of ready table entries. Second,
if the memory controller cannot update any of the three copies of
the physical-to-real table, then that physical page can no longer be
correctly mapped. In either of these cases, the memory controller
generates a non-maskable interrupt for the operating system. These
cases are negligibly rare; thus, the operating system is expected to
simply halt the system if they occur.

The ready table is made visible to the OS by memory-mapping
its contents and by redirecting any reads or writes referencing the
corresponding addresses to it. The table is periodically refilled by
the operating system using a timer interrupt, as we will explain in
Section 3.3.



3.2.4 Scheduling Accesses to Primary and Backup Pages
One potential drawback to dynamic replication is the possibility
of performance loss due to higher memory system contention,
and due to the increased latency of retrieving both replicas on a
PCM access. Figure 4(a) shows an example of how accesses to the
two replicas are generated and scheduled with a lazy replication
policy. Upon receiving a read to location A, the memory controller
inserts a read request into its transaction queue. After the read gets
scheduled (1) and returns from PCM (2), the controller checks the
parity bits in the block to detect any faults. If a fault is detected, the
controller inserts a read request for the replica into its transaction
queue (3); when this read issues (4) and eventually completes
(5), the controller returns the data back to the last-level cache.
To maximize the chances of retrieving fault-free data on the first
trial, the OS sets the page with fewer bit failures as the primary
copy in its pairing algorithm. Although lazy replication mitigates
unnecessary writes (and thus, traffic and wearout) to a backup page,
the access latency is effectively doubled in cases where the primary
page cannot produce the block by itself.

An alternative strategy that aims at eliminating this problem
is an eager replication policy (Figure 4(b)). Under eager replica-
tion, the memory controller immediately inserts a request for the
backup block in its transaction queue. In the pairing process, the
OS chooses the primary and backup pages so that they reside on
different DRAM banks. Consequently, bus transactions for the pri-
mary and backup pages proceed in parallel according to the DDR2
protocol (1 and 2), taking full advantage of PCM’s bank-level par-
allelism. On writes, the memory controller waits for both checker
reads to complete, and then it removes both the primary and the
backup requests from its transaction queue. On a read request, how-
ever, the request is deemed complete as soon as one of the two ac-
cesses (either the primary or the replica) completes with fault-free
data, and both requests are removed from the transaction queue im-
mediately. As a result, load balance across PCM banks improves
significantly since the replica in the least-loaded of the two banks
can satisfy the entire request, which was previously impossible
since each PCM bank serves a distinct set of addresses. As we will
show in Section 5, this also has a dramatic impact on overall system
performance (anticipated by earlier theoretical work on randomized
load-balancing algorithms [1, 15]), and surprisingly, makes it pos-
sible for a dynamically replicated PCM subsystem to deliver better
performance than a baseline, conventional system.

3.3 OS Support
When failures occur, the memory controller places the failed pages
back in the ready table for further processing by the operating sys-
tem. The operating system’s job is to refill the ready table with
new compatible pairs so that the memory controller can handle fur-
ther failures. The memory controller indicates that this processing
is necessary by issuing an interrupt whenever it consumes pages
from the ready table; this interrupt causes the operating system to
signal a high-priority kernel thread whose sole job is to refill the
ready table.

The operating system maintains two linked lists of real pages:
the incoming list and the unmatched list. The incoming list contains
all failed pages that were reported by the memory controller via the
ready table. The unmatched list contains all pages that the operating
system has failed to match with other pages in the unmatched list.
As failed pages arrive from the memory controller, they are added
to the incoming list; as pages are needed for the ready table, they
are pulled off the incoming list and matched against the unmatched
list.

Both of these lists are singly-linked lists maintained by storing
pointers in the real pages themselves. Since any 64-bit entry in a
real page might be faulty, the pointer to the next page is the first
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Figure 4. Example of memory access scheduling with lazy (top) and eager (bot-
tom) replication policies.

aligned 64-bit pointer with no faulty bytes (according to parity).
Because we remove pages with more than 160 bit failures (see
Section 5.1), there will always be such a pointer, often in the
very first word of a page. These pointers can be designed to point
directly to the location of the next pointer in the subsequent page
(as opposed to the base of the page) so that the list can be traversed
without searching for a valid 64-bit pointer at each step. The head
of each list is a page stored at a well-known location in PCM, which
allows the lists to be recovered on reboot. For the purpose of these
reads and writes, the memory controller provides raw access to
real pages; however, aside from these writes, the operating system
accesses physical addresses only.

When the refill thread is signaled, its task is to refill any entries
between the os pointer and the mc pointer. First, it scans all entries
between os and mc, placing any valid page indices on the tail of the
incoming list. Then, it refills each entry by creating a new pair. To
create a new pair, it removes the head of the incoming list. If this
page is pristine, it does not need to be paired; however, this case
only occurs when the device is new. If the page is not pristine, then
we traverse the unmatched list looking for a match. If a match is
found, we remove the matched page from the unmatched list. If a
match is not found, we place our unmatched page at the tail of the
unmatched list and try again with a new page from the incoming
list. Once a pair is found, we place it in the ready table at the
os pointer and then increment os. When os catches up to mc, we
are done. Note that because the memory controller only accesses
elements of the ready table between mc and os, and because only



one core per memory controller runs this algorithm, there are no
synchronization problems on the ready table entries. In particular,
the memory controller is free to take additional faults and consume
more entries from the ready table while the operating system is
refilling other portions of the table.

Matches between two pages are determined by issuing reads
to both pages, computing parity to determine which bytes are
faulty, and then comparing the results from both pages to determine
whether they have faults at the same location. These comparisons,
which are the most expensive portion of the matching algorithm,
are dominated by throughput-bound sequential reads from PCM
that operate at near-perfect data bus efficiencies over a DDR2-800
bus; thus, with 8KB of data and at 800MB/s of throughput, we need
approximately 10 µs for each comparison.

When the device is first initialized, we reserve a pool of pages by
adding them directly to the incoming list. This reserve pool ensures
that we will always have a large set of pages available for pair-
ing and can thus form pairs on demand. Even under conservative
assumptions about the probability of forming a new pair of com-
patible pages, a pool of 10,000 reserve pages (40 MB) per memory
controller is sufficient for this purpose. Note, though, that forming
pairs on demand is not strictly required for correct operation, so in
practice, we could use far fewer than 10,000 reserve pages.

As mentioned above, the operating system can also receive non-
maskable interrupts from the memory controller in the event that a
hard fault occurs at the memory controller due to an empty ready
table or a triple failure in the physical-to-real table. Both of these
events occur with negligible frequency and will cause the system to
halt.

3.4 Dynamic Pairing Algorithms
The algorithm used by the operating system to construct pairings
of compatible pages in the unmatched list is a critical component
of DRM. Given the set of non-pristine physical pages in the un-
matched list, an efficient algorithm will be able to construct more
real memory pages, and will recover more PCM capacity. In this
section, we compare the pairing algorithm proposed above with a
capacity-optimal algorithm and show that the proposed algorithm
achieves a near-optimal solution, while being efficient.

3.4.1 Optimal Pairing for Capacity
Interestingly, the problem of finding a capacity-optimal pairing
given a set of non-pristine physical pages can be solved optimally in
polynomial time. Essentially, the problem maps to a known max-
imum matching problem in the compatibility graph G = (P,C),
where P is the set of pages, and C is the edge set connecting any
two pages that are compatible. A maximum matching is a subset
M ⊆ C of maximal cardinality, such that no two edges in M are
adjacent. It was first shown by Edmonds that polynomial-time, op-
timal algorithms for this problem exist, regardless of the structure
of the graphs [5]. Theoretically, we could periodically run such an
optimal matching algorithm across all non-pristine physical pages
(even those currently forming real pages). While this would guar-
antee that we always ran at maximum memory capacity, such an
approach is impractical for several reasons.

First, optimal maximum matching algorithms are complex, and,
while polynomial, rather slow. The fastest known algorithm [12]
has an asymptotic running time of O(|

√
P ||C|), which can be as

high as O(|P |2.5). Also, this algorithm is so complex that it has
taken nearly 10 years after its initial publication to prove its correct-
ness. Second, the algorithm is neither incremental nor local. When-
ever a new page is added to the pool of available pages, the algo-
rithm might demand this page to be paired with an already paired
page in order to preserve capacity-optimality. This can force ex-
isting real pages to be broken up, potentially incurring prohibitive

copying overhead. Similarly, a single new bit-error in a currently
paired page could trigger a chain-reaction in which many pairs are
broken up and re-paired. In the worst-case, it is even possible for
a single-bit failure to trigger a reaction that breaks up every single
existing memory pair.

These observations motivate us to seek a simple, low overhead,
and incremental pairing algorithm.

3.4.2 Low Overhead Approximate Pairing
The DRM implementation, described above, uses a much simpler
algorithm that is both incremental and greedy. Whenever a page is
under consideration for pairing, it is compared to the pages cur-
rently residing in the unmatched list one by one. As soon as a com-
patible page is found, the two pages are paired. As discussed, this
algorithm can be implemented with low overhead, and it is also in-
cremental and local by nature. On the other hand, it can be subopti-
mal with regard to capacity; possible pairings can be prevented. To
see this, consider the following example: assume that a real page P
is formed by two physical pages Pa and Pb. Now, assume that two
new pages Pc and Pd are added the pool of available pages. These
new pages Pc and Pd are mutually incompatible, but Pc is com-
patible with Pa, and Pb is compatible with Pd, respectively. The
approximate algorithm will be unable to form a new real memory
page (because P is already matched, and the two new pages are in-
compatible), whereas the optimal pairing would break the existing
real page, and form two new real pages (Pa, Pb) and (Pc, Pd).

Fortunately, it can be shown that the expected difference in the
number of pairs generated by the optimal and approximate algo-
rithms is small in practice. First, observe that even in the absolute
worst-case, the approximate algorithm finds at least half the opti-
mal number of pairs. This is because a single pair in the approx-
imate algorithm can prevent at most two pairings in the optimal
solution. Moreover, in the real-world compatibility graphs we ob-
serve in our system, the difference between the approximate solu-
tion and the optimal one is much smaller. To see this, notice that if
the lifetimes of bits are distributed randomly across PCM, then, as-
suming perfect wear-leveling, the compatibility graph forms a sim-
ple random graph Gn,p, where n is the number of physical pages
with failures, and every compatibility edge exists with probabil-
ity p, the probability of two pages being compatible. This prob-
ability can be computed as a function of the bit-failure rate r,
p =

[
1− (1− r̄9)2

]4000
, where r̄ = 1 − r is the probability that

a random bit does not have a failure.
This random graph abstraction is useful because it was shown

using methods from statistical physics that the size of the max-
imum matching in such graphs can be bounded from above by
|P |
(
1/2− e−c/2 + c2e−2c/2

)
, where c = |C|/|P | is the aver-

age graph degree [32]. On the other hand, it is known that the sim-
ple greedy algorithm that picks edges randomly achieves a match-
ing of |P |

(
1/2 · c

c+1

)
edges [4]. Comparing the two bounds, we

observe two things. First, both bounds will approach the optimal
value of 1/2 very quickly as the average degree c in the graph
increases. Second, there can only be a substantial difference be-
tween the two algorithms if the average degree is less than about 6
(i.e., every page is compatible with no more than a small constant
number of other pages). Intuitively, this follows from the fact that
for sufficiently many compatible pages, the “matching diversity” is
higher, giving the algorithm more choice and opportunity to correct
previously taken decisions. The algorithm used in our system does
not strictly follow the above greedy-algorithm, because at any time,
the pages in the unmatched list are not independent of each other
(see also the discussion in Section 5.1.1). However, notice that the
above bounds are robust: if we model the non-independence be-
tween unmatched pages as manifesting itself as a lower average
degree in the random graph for the approximate algorithm, we see



that even with lower average degree, the optimal and approximate
bounds match very closely. For example, if we assume that the av-
erage degree of unmatched pages in the approximate algorithm is
only half the average degree for the optimal algorithm (a conser-
vative assumption, see Section 5.1.1), the bounds imply that both
the approximate algorithm and the optimal algorithm behave very
similarly. Specifically, for 50k pages in the pool, and for 160 bit
failures per page, the average degree in the compatibility graph is
at least 50. But, even if we conservatively assume only half of that
for our approximate algorithm due to dependencies, the expected
capacity reduction is still only 2% compared to the optimum.

With regard to our work, the results are important: they show
that the critical time-range in which the approximate solution could
become noticeably suboptimal compared to the ideal capacity-
optimal algorithm occurs only towards the very end of the life
cycle—shortly before there are no compatible pages left to pair,
even under capacity-optimal pairing. So long as enough compati-
ble pages remain, the approximate solution achieves near-optimal
performance. This analytical observation is supported by simula-
tion results in Figure 5, which shows capacity under optimal and
approximate pairing algorithms. The figure shows the respective
matching sizes as a function of the number of failures per page.
For almost the entire memory lifetime (expressed as the number of
failures per page on the x-axis), both algorithms are equally good,
and the approximate solution starts dropping off shortly before the
optimal solution drops off as well—shortly before the lifetime of
the device comes to an end even with the best possible algorithm.
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Figure 5. Size of the resulting matching when using optimal pairing algorithm
compared to the low-overhead approximate algorithm.

4. EXPERIMENTAL SETUP
We conduct our experiments on a quad-core processor model with
4MB of L2 cache and an associated DDR2-800 PCM memory sys-
tem. Table 1 shows the microarchitectural parameters of the proces-
sor cores we model, using a heavily modified version of the SESC
simulator [23]. Table 2 shows the parameters of the shared L2 cache
and the PCM memory subsystem modeled after Micron’s DDR2-
800 SDRAM [14], modified according to published PCM timing
specifications in the literature [11]. We simulate ten memory inten-
sive, scalable parallel applications with sixteen threads each; Ta-
ble 3 lists the input sets we use. All applications are compiled using
the gcc compiler at the O3 optimization level. Each application is
simulated to completion.

Performing an accurate endurance comparison between con-
ventional ECC and dynamic replication presents a methodolog-
ical challenge. With a mean lifetime of 108 writes per cell, it
takes over 24 billion writebacks from a last-level cache to ex-
haust half of the capacity of a 1GB DIMM, even in the absence of
any wear-leveling mechanisms, and under a worst-case traffic pat-
tern that systematically writes to a single hot spot on every page.
Moreover, recently proposed, state-of-the-art PCM wear-leveling
techniques come within 97% of the lifetime achieved under ideal

wear-leveling [20], pushing this figure to many tens of trillions of
writebacks—a figure that is clearly outside the realm of microar-
chitectural simulation.

In response, we adopt an alternative, conservative strategy to
evaluate the endurance potential of DRM. While any imperfections
in wear-leveling that generate hot spots magnify the potential en-
durance improvement of DRM (or any other technique attempting
to mitigate wearout), we conservatively assume an idealized write
pattern that systematically scans through the entire PCM address
range, thereby inducing an even amount of wear on each cell in
the device. We distribute cell lifetimes using a normal distribution
across all cells, and we experiment with three different values of
the coefficient of variation (CoV, or the ratio of the standard devi-
ation to mean) of lifetimes, representing low (0.1), medium (0.2),
and high (0.3) levels of process variability.

Processor Parameters
Frequency 4.0 GHz
Number of cores 4
Number of HW contexts per core 4
Thread Selection Policy Round robin
Pipeline Organization Single-issue, in-order
iL1/dL1 size 32 kB
iL1/dL1 block size 32B/32B
iL1/dL1 round-trip latency 2/3 cycles (uncontended)
iL1/dL1 ports 1 / 1
iL1/dL1 MSHR entries 16/16
iL1/dL1 associativity direct-mapped/4-way
Coherence protocol MESI
Consistency model Release consistency

Table 1. Core parameters.

Shared L2 Cache Subsystem
Shared L2 Cache 4MB, 64B block, 8-way
L2 MSHR entries 64
L2 round-trip latency 32 cycles (uncontended)
Write buffer 64 entries

DDR2-800 PCM Subsystem [14]
Transaction Queue 64 entries
Peak Data Rate 6.4GB/s
PCM bus frequency 400 MHz
Number of Channels 4
Number of Ranks 1 per channel
Number of Banks 4 per rank
Command Scheduler FR-FCFS
Row Buffer Size 2KB
tRCD 22 PCM cycles
tCL 5 PCM cycles
tWL 4 PCM cycles
tCCD 4 PCM cycles
tWTR 3 PCM cycles
tWR 6 PCM cycles
tRTP 3 PCM cycles
tRP 60 PCM cycles
tRRDact 2 PCM cycles
tRRDpre 11 PCM cycles
tRAS 18 PCM cycles
tRC 22 PCM cycles
Burst Length 8
Array Read (pJ/bit) 2.47
Array Write (pJ/bit) 16.82
Buffer Read (pJ/bit) 0.93
Buffer Write (pJ/bit) 1.02

Table 2. Parameters of the shared L2 and PCM subsystem.

5. EVALUATION
We first present the endurance potential of dynamically replicated
memory by comparing PCM capacity and lifetime under SECDED
ECC and DRM. We then quantify the performance overhead of
dynamic replication with lazy and eager replication policies at



Benchmark Description Problem size
Data Mining

SCALPARC Decision Tree 125k pts., 32 attributes
NAS OpenMP

MG Multigrid Solver Class A
CG Conjugate Gradient Class A

SPEC OpenMP
SWIM-OMP Shallow water model MinneSpec-Large

EQUAKE-OMP Earthquake model MinneSpec-Large
ART-OMP Self-Organizing Map MinneSpec-Large

Splash-2
OCEAN Ocean movements 514×514 ocean

FFT Fast Fourier transform 1M points
RADIX Integer radix sort 2M integers

CHOLESKY Cholesky Factorization tk29.O

Table 3. Simulated applications and their input sizes.

different points throughout the lifetime of the device. Next, we
present an analysis of the performance overhead of PCM interrupt
handling in the OS. Finally, we quantify the energy impact of
dynamic replication.

5.1 Lifetime
Figure 6 compares the lifetime and capacity provided by SECDED
ECC and dynamic replication, using a 4GB PCM device with
three different CoV values. In the figure, both device capacity and
lifetime are normalized to an idealized 4GB part with no process
variation (CoV = 0). An eager replication policy (Section 3.2.4) is
employed with dynamic replication in all three experiments.

With a CoV of 0.1, SECDED ECC starts decommissioning
pages at roughly half of the lifetime of an ideal part. While the prob-
ability of any single bit having a lifetime sampled from the low-end
of the tail of the lifetime distribution is very small, with a 4KB page
size, a page is highly likely to have at least one bit sampled from
the tail distribution. A page has to be decommissioned and its con-
tents moved to a new location upon the first (correctable) bit failure
under SECDED ECC; as a result, once pages start failing, capacity
runs out quickly: half of the capacity is lost at approximately 55%
of the lifetime of an ideal part, and the entire DIMM is rendered
unusable at 58% of the ideal lifetime. In contrast, by dynamically
recycling faulty pages, and by pairing them up on failures, dynamic
replication keeps a page alive until 160 bit errors. Under dynamic
replication, the device retains 50% of its capacity until 70% of the
full lifetime of an ideal PCM part, and is not fully exhausted un-
til 73% of the ideal lifetime—a 25% improvement over SECDED
ECC.

As process variation increases, the benefits of using dynamic
replication become more pronounced. At a CoV of 0.2, SECDED
ECC decommissions half of the available capacity at 17% of the
lifetime of an ideal device. Dynamic replicated memory pushes
this figure to 47% of the ideal lifetime, and thus increases write en-
durance by a factor of 2.7 over SECDED. As CoV increases further,
SECDED ECC takes a larger endurance hit, and at a CoV of 0.3,
it delivers only 0.6% of the ideal lifetime. When the same device
is operated under DRM, however, half of the capacity is retained
until 23% of the ideal lifetime, for an endurance improvement of
40x over conventional SECDED ECC.

In summary, by leveraging compatibilities among faulty PCM
pages, and by pairing up two compatible real pages to represent
a single physical page, dynamic replication delivers dramatically
better write endurance than SECDED ECC. The improvements
provided by dynamic replication increase considerably as PCM
scales to nanoscale feature sizes, and variations become more and
more severe.
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Figure 6. Endurance of SECDED ECC and dynamic replication. Results are nor-
malized to an ideal PCM device with CoV = 0, operating under SECDED ECC.

Usage Models. These results have important ramifications on po-
tential usage models for dynamic memory replication. Any fault
detection or correction mechanism (e.g.; dual- or triple-modular
redundancy, SECDED ECC) necessarily allocates a portion of
the available storage space to implementing redundancy, and thus
causes the protected part’s product specification to be lower than
the full capacity of the device; justifying these costs in a production
environment requires commensurately larger gains in device life-
times. In the case of dynamic replication, the right usage model—
driven, to a large extent, by economical considerations—will likely
depend on the magnitude of lifetime variability. For instance, one
option would be to spec any parts built in a process with extreme
lifetime variation (CoV = 0.3) at 50% of the maximum capacity in
return for much longer lifetimes. Conversely, parts manufactured
in a lower-variability process could be specced at a higher capacity,
and dynamic replication could be selectively activated under OS
control at the onset of failures beyond the spec. Flash-based SSDs
employ a similar model for bad block management [27], where a
set of blocks is reserved to replace blocks that fail prematurely to
extend device lifetimes.

5.1.1 Ready Table Capacity
A secondary issue regarding lifetime is ready table capacity. Recall
that the ready table acts a buffer between the memory controller
and the operating system to ensure that the memory controller



has enough valid page pairs to handle incoming failures. Since
the memory controller cannot handle errors when the ready table
entries are exhausted, we must ensure that the capacity of the ready
table is large enough to make such an event extremely unlikely.

To bound the probability of this event occurring, we consider
intervals of n seconds in our experiments above. The ready table
holds 128 entries, so we would like to show that the memory
controller is unlikely to use more than 64 entries in an interval and
that the operating system is likely to refill at least 64 entries in an
interval. Thus, during each interval, the operating system will be
capable to refilling the entries used by the memory controller in
the previous interval, while having enough capacity to tolerate the
memory controller’s usage in the current interval.

First, to show that the memory controller is unlikely to use more
than 64 entries in a second, we measured the rate at which failures
occurred during our experiments. Although the failure rate for the
first 75% of the device lifetime was less than 10−8 failures per
write, it climbs to as much as 6.4× 10−7 at the end of the device’s
lifetime. At 800 MB/s, we perform 1.25 × 107 writes per second.
We can bound the probability of seeing 64 or more failures by
computing the number of ways to choose 64 of these writes times
the probability that all 64 writes fail, or

(
1.25×107n

64

)
(6.4×10−7)64.

For an interval of 1.6 seconds, this result is approximately 1.6 ×
10−17. Thus, even with a device lifetime of 2.35 × 108 seconds,
or 7.4 years, the chances of seeing even a single case where the
memory controller consumes more than 64 entries in a second is
extremely low.

Second, to show that the operating system can refill at least
64 entries per second, we look at the operating system’s refill al-
gorithm. The bottleneck for this algorithm is the hardware prim-
itive that checks two pages for compatibility, which takes about
10 µs per page pair as described earlier; thus, we can perform
105n page comparisons per interval. If we assume that these com-
parisons are independent and that they succeed with probability
p, then we can compute directly the probability that the operat-
ing system finds fewer than 64 valid pairs in an interval, which is∑63

k=0

(
105n

k

)
pk(1 − p)10

5n−k. With a 1.6 second interval and a
probability of 0.001, this bound comes to 1.9 × 10−18, similar to
the first bound computed above.

Unfortunately, our page comparisons are not strictly indepen-
dent; because we perform many comparisons against the same pool
of candidate pages, the choice of pages to compare is affected by
the results of previous comparisons. To attempt to account for these
dependencies, we simulated our page-pairing algorithm at 160 fail-
ures per page (the very end of the device’s lifetime). If we com-
pared two random pages, we succeeded with probability 0.0021,
but when simulating the algorithm itself, we took 875 comparisons
per match, which corresponds to a 0.0011 success probability. For-
tunately, this latter probability, which takes into account many of
the dependencies inherent in our matching algorithm, is above the
threshold for the bound computed above. In fact, if we tighten our
analysis to use precisely the 1/875 success probability and a 1.45
second interval, we improve both bounds by about two orders of
magnitude.

These bounds are conservative in many respects. First, they
use the worst failure rate observed in our experiments, which is
dramatically higher in the final 10–15% of the device’s lifetime
than it is for the beginning and middle of the device’s life. Second,
we assume the maximum number of bit failures allowed by our
system, which also has a dramatic impact on the probability of
forming pairs. And third, a failure to consume fewer than 64 entries
or to refill more than 64 entries in an interval is not itself a fatal
error; these events must occur frequently and in close proximity for
a true failure to occur.

Overall, this analysis shows that the chance of either using more
than half of the ready table or failing to refill more than half of the
ready table in any given interval is extremely low; as a result, the
chances of running out of ready table entries at some point during
the device’s lifetime is negligible.

5.2 Performance
Figure 7 compares the performance potential of lazy and eager
replication policies at four different points along the lifetime of
a device. In each case, the performance of both replication tech-
niques are normalized to an ideal PCM device with no variability,
operating under no failures.

Interestingly, early on in the lifetime of the device (1-50 fail-
ures), eager replication delivers a 22% performance improvement
over the baseline, ideal PCM model. As we explained in Sec-
tion 3.2.4, the primary cause of the speedup is a significantly bet-
ter load balance across PCM banks. On a read, eager replication
generates requests for both the primary and the backup blocks; as
soon as one of the two requests provides a fault-free copy of the
data, both requests are deemed complete, and are removed from
the PCM scheduler’s queue. As a result, the least loaded of the two
PCM banks can satisfy the entire request, leading to a much better
load balance (and thus, performance) than the baseline, unrepli-
cated system.

As more and more failures accrue to each page, the probabil-
ity of a single access satisfying a cache-block sized read request
decreases appreciably. As a result, eager replication’s performance
falls below unreplicated PCM. However, even with 100 failures per
page, eager replication delivers nearly 90% of the performance of
an unreplicated system. Lazy replication is systematically inferior
to eager replication as the serialization of accesses to primary and
backup blocks effectively doubles read latency.
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Figure 7. Performance of lazy and eager replication policies. Results are normal-
ized to an ideal PCM device with CoV = 0, operating under no failures.



5.2.1 PCM Interrupt Handling
The main source of overhead for the operating system is the re-
fill thread, which must respond to memory controller interrupts by
generating new page pairs for the ready table. Adding and remov-
ing pages from the operating system’s incoming and unmatched
page lists has negligible cost per ready table entry, since only a few
writes to memory are involved. However, a more significant source
of overhead is the comparison operation which determines whether
two pages are compatible. Near the end of the device’s lifetime,
when very few pages are compatible, this cost can become signifi-
cant.
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Figure 8. Expected percentage of total CPU time consumed by refilling the ready
table as a function of device age.

To determine the overhead for ready table refilling, we simu-
lated our algorithm at several points in the device’s lifetime, up
to the maximum of 160 failures per page allowed by our scheme.
At each point, we measured the average number of comparisons
needed to form a pair over 100,000 pairings, assuming that failures
on incoming pages are distributed randomly. Since each compari-
son takes approximately 10 µs, we can use the failure rate and sim-
ulation results at each point in the device’s lifetime to determine
the fraction of each second that the operating system must devote
to refilling the ready table.

Figure 8 shows the results from this analysis. Due to a combi-
nation of a low failure rate and a high compatibility probability, the
time spent refilling the ready table is negligible (about one compar-
ison, or 10 µs, per second) for the first 95% of the device’s lifetime.
For the last 5% of its lifetime, this cost jumps as high as 2.6% of
overall CPU time; however, even in this state, the vast majority of
CPU cycles can still be devoted to doing useful work.

5.3 Energy
Lee et al. [11] estimate a DDR2-800 compatible PCM part at the
65nm technology node to expend 16.82pJ/bit on an array write.
In the worst case, assuming a sustained peak write bandwidth of
800MB/sec with 100% scheduling efficiency, this corresponds to
less than 0.11W of power consumption for a 4GB PCM part. While
this represents a negligible portion of the overall system power in
most desktop, server, or mobile computing platforms, we would
nevertheless like to understand the impact of dynamic replication
on PCM energy, and we would like to confirm that the overall
energy consumption under dynamic replication is still negligibly
small.

Figure 9 shows the energy overhead of dynamic replication
with eager and lazy replication schemes, normalized to a baseline
unreplicated PCM subsystem. As expected, eager replication does
result in higher energy overheads than lazy replication, but the
overheads are never more than 2x over an unreplicated scheme.
Given that the base power level of the device is well under 1W,
we expect the additional energy overhead of dynamic replication to
have a negligible impact on overall system power consumption.
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Figure 9. Energy consumption of lazy and eager replication policies. Results are
normalized to an ideal PCM device with CoV = 0, operating under no failures.

6. RELATED WORK
Lee et al. [11] present area-neutral architectural techniques to make
the performance and energy of DDR-compatible PCM competitive
with a baseline DRAM subsystem, demonstrating that buffer reor-
ganizations can bring PCM delay and energy within 1.2x and 1x
of DRAM, respectively. Qureshi et al. [21] propose a hybrid main
memory system comprising a PCM device and a tightly coupled
DRAM buffer. The proposed system reduces page faults by 5x and
improves performance by 3x compared to a baseline, DRAM-only
system. Later, Qureshi et al. [20] propose start-gap wear-leveling, a
low-overhead hardware wear-leveling technique that comes within
97% of the lifetime of an ideal wear-leveling scheme. Zhou et
al. [33] propose a durable and energy-efficient main memory us-
ing PCM; the proposed wear-leveling and partial write techniques
extend PCM endurance by 13–22x on average. Wu et al. [29]
present a hybrid cache architecture comprising disparate memory
technologies, seeking to take advantage of the best characteristics
that EDRAM, MRAM, and PCM offer. Zhang and Li [30] explore
cross-layer techniques to mitigate the impact of process variations
on PCM-based memory systems; the proposed mechanisms adjust
PCM programming currents based on device variability character-
istics, and apply data-comparison-write with memory compression
to reduce the number of bit-flips on cells that suffer from pro-
cess variations. These approaches are orthogonal to our proposal as
none of this earlier work on PCM discusses the necessary support
for error handling, detection, or recovery; and none of this earlier
work explores the possibility of reclaiming faulty, decommissioned
memory space.

Roberts et al. [24, 25] and Mudge et al. [16] propose to group
faulty blocks in a last-level SRAM cache to construct a new, func-
tional logical block; the proposed block grouping technique recov-
ers more space and delivers lower miss rates than single- or double-
error correction schemes. Unlike DRM, block grouping assumes



a fault model where the location of faulty cells can be identified
at system start-up or can be hard-wired during manufacturing test,
and where no new failures occur at runtime. Consequently, dynamic
detection of new faults or recovery are not considered, and runtime
mechanisms for breaking pairs and forming new ones are not dis-
cussed. Unlike DRM, the proposed scheme reads or writes both
replicas on every access.

7. CONCLUSIONS
In this paper, we have presented a technique for dynamically pair-
ing PCM pages in order to make one usable page from two faulty
and otherwise unusable pages. We have shown that PCM devices
require the memory controller to issue a read after each write in
order to determine whether failures have occurred, and we have
presented a design for hardware and software that can recover from
any PCM faults that are detected. Our approach is complementary
to wear leveling; whereas wear leveling attempts to distribute ap-
plication writes evenly, our technique allows use to reuse pages that
encounter a small number of early faults.

We believe that this technique is part of a larger trend toward
building reliable systems from redundant, unreliable devices. As
process technology scales, the variation in memory endurance is
likely to become more pronounced, making such techniques essen-
tial.
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