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Abstract
We describe the key principles of a flexible dependent type sys-
tem for low-level imperative languages. Two major contributions
are (1) a new typing rule for handling mutation that follows the
model of Hoare’s axiom for assignment and (2) a technique for au-
tomatically inferring dependent types for local variables. This type
system is more expressive than previous dependent type systems
because types can now depend on mutable variables; in addition,
it improves ease of use by inferring dependent type annotations
for local variables. Decidability is addressed by emitting run-time
checks for those conditions that cannot be checked statically.

Using these principles, we have designed Deputy, a dependent
type system for C whose types allow the programmer to describe
several common idioms for the safe use of pointers and tagged
unions. We have used Deputy to enforce memory safety properties
in a number of common benchmark suites as well as in Linux
device drivers and TinyOS [16] components. These experiments
show that Deputy’s dependent types are useful in a wide range of C
programs and that they have a relatively low annotation burden and
performance cost.

1. Introduction
Types provide a convenient and accessible mechanism for spec-
ifying program invariants. Dependent types extend simple types
with the ability to express invariants relating multiple state ele-
ments. While such dependencies likely exist in all programs, they
play a fundamental role in low-level programming. The follow-
ing widespread low-level programming practices all involve depen-
dencies: an array represented as a count of elements along with a
pointer to the start of the buffer; a pointer to an element inside an
array along with the array bounds; and a variant type (as in a Pas-
cal variant, or a C union) along with a tag that identifies the active
variant. If we ignore such dependencies we cannot even prove the
memory safety of most low-level programs.

In this paper we present a few general principles that enable the
convenient use of dependent types in low-level programs. Specif-
ically we consider and contribute solutions to the following chal-
lenges:

• Soundness: Mutation of variables or heap locations, used heav-
ily low-level programs, might invalidate the types of some state
elements. Previous dependent type systems include restrictions
to ensure that mutation never affects types [1, 28, 29]. We show
that it is possible to combine mutation and dependencies in a
more flexible manner by using a type rule inspired by Hoare’s
rule for assignment.

• Decidability: Dependent type checking involves reasoning
about the run-time values of expressions. In most previous de-
pendent type systems, dependencies are restricted to the point
where all checking can be done statically. Instead we allow
most dependencies that can be expressed in the expression lan-

guage, and we propose the use of run-time checks where static
checking is not sufficient. This hybrid type-checking strategy
has also been proposed recently by Flanagan [10].

• Usability: Writing complete dependent type declarations can be
a considerable burden. We describe a technique for automatic
dependency inference for local variables, starting from existing
declarations for global variables, data structures, and functions.

We have applied these general principles for low-level depen-
dent types to create the Deputy type system for the C programming
language. Deputy provides a set of dependent types that allow pro-
grammers to safely express common C programming idioms, most
notably those involving pointer arithmetic and union types. Previ-
ous approaches to safe C involved significant changes in the pro-
gram’s data representation in order to add metadata for checking
purposes: certain pointers were given a “fat” representation that in-
cludes the pointer and its bounds, and tags were added to union
values [17, 21]. These data representation changes can introduce
new race conditions, and they make it very hard to interface with
external libraries or to process one function or module at a time.
Until now there was no satisfactory solution to this issue, although
partial solutions have been proposed [7, 18, 24]. To solve this prob-
lem, we observe that most of the metadata required for checking
purposes already exists in the program. Using Deputy’s dependent
types, the programmer can identify this preexisting metadata, al-
lowing the compiler to check the code without changing data rep-
resentations. In this paper, we show experimental evidence that this
approach is applicable to a wide range of C programs, with rela-
tively low annotation burden and performance penalty.

In Section 2, we present a high-level preview of the main stages
in the Deputy system for safe low-level programming, using a sim-
ple example. Section 3 contains the technical core of the paper,
describing our dependent types and our inference technique for a
core imperative language with references. Of particular importance
are Section 3.2, which presents the general principles for handling
mutation, and Section 3.5, which describes our scheme for infer-
ring dependencies automatically. Then, Section 4 shows how these
general principles can be applied to provide safe handling of C’s
pointer arithmetic and union types. In Section 5 we describe our
experience using Deputy for a range of C programs. Finally, we
discuss related work in Section 6.

2. Deputy Overview
In order to provide an intuition for the formal development start-
ing in the next section, we present here an example showing the
operation of Deputy on a simple C program. The goal is to demon-
strate the capabilities of Deputy while deferring the details of how
it works to later sections.

In Figure 1, we show the source code for a program that returns
the sum of the elements between buf and end in an array of
integers. Underlined and italicized code indicates annotations and
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1 int sum (int * count(end - buf) buf, int * end) {
2 int sum = 0;
3 while(buf < end) {
4 assert(0 < end - buf);
5 sum += * buf;
6
7 int tmplen = (end - buf) - 1;

8 assert(0 <= 1 <= end - buf);
9 int * count(tmplen) tmp = buf + 1;

10
11 assert(0 <= end - tmp <= tmplen);
12 buf = tmp;
13 }
14 return sum;
15 }

Figure 1. A simple Deputy program, along with the instructions
and annotations added during automatic dependency inference (un-
derlined) and the assertions added during type checking (in italics).

run-time checks inserted automatically by Deputy. The body of the
loop is an expanded version of the more compact statement “sum
+= * buf ++”. We have introduced the tmp temporary variable
so that we can consider separately the increment of buf and the
assignment of the result back to buf; however, this temporary
variable is not required.

The example input is the program shown in Figure 1 without
any of the statements shown underlined or in italics. This pro-
gram is standard C, with one programmer-supplied annotation for
the type of the buf formal argument. The annotated type int *
count(end - buf) describes a pointer into an array of at least
end - buf integers. Implicitly, this annotation also specifies that
end - buf is non-negative.

Deputy operates in several passes over the program:

Pass 1: Automatic dependency generation. In order to reduce
the annotation burden, Deputy requires fully-specified types only
for globals, data structures, and function types. In this first pass,
Deputy creates new variables for the missing dependencies in the
types of local variables. In Figure 1, the underlined code is the code
added in this pass; here, Deputy has created the tmplen local vari-
able in order to complete the type of the tmp variable declared in
line 9. The newly created variables are updated whenever the vari-
able for which they were created is updated; thus, the initialization
of tmplen in line 7 corresponds to the initialization of tmp in line 9.
The value used to initialize tmplen reflects the fact that the array
“buf + 1” (the initial value of tmp) has one fewer element than
buf. Section 3.5 gives the precise description of this pass, indepen-
dent of the actual dependent types used.

Pass 2: Flow-insensitive type checking and instrumentation.
Once all the variables have complete types, Deputy checks each
instruction separately. Most of the type checking is done statically,
but all of the checks that involve reasoning about run-time val-
ues of expressions are emitted as run-time assertions. In Figure 1,
we show in italics the assertions added during type checking for
our example. The assertion in line 4 ensures that the buf array is
nonempty and can therefore be safely dereferenced. The assertion
in line 8 ensures that the array is being incremented by a positive
number that is less than or equal to the size of the array.

The assignment in line 12 exposes the power of Deputy’s han-
dling of mutation in presence of dependent types. Previous depen-
dent type systems would disallow any assignments to buf because
there exist types in the program that depend on it. The intuition
behind the check in line 11 is that we must ensure that after the
assignment buf points to at least end - buf elements (as required

by its type), yet we know that before the assignment tmp points to
at least tmplen elements. Section 3.2 describes the type checking
and instrumentation pass.

Pass 3: Flow-sensitive optimization of checks. Because our flow-
insensitive type checker emits many redundant checks, we follow
our flow-insensitive type checker with a flow-sensitive data-flow
analysis for detecting trivial and redundant checks. We do not de-
scribe in this paper any particular analysis. In our implementation
we use a global data-flow analysis for copy propagation and linear
machine arithmetic. In the example shown in Figure 1 even a sim-
ple analysis can eliminate all the assertions introduced during type
checking. A good analysis during optimization not only results in
faster code but also allows us to detect statically checks that are
guaranteed to fail. Most previous dependent type systems restrict
the dependencies such that all assertions fall within theories with
simple decision procedures, rejecting programs with assertions that
cannot be discharged statically. In Deputy we expect that some as-
sertions will remain in the program even after optimization, either
because they use operators for which we do not have efficient de-
cision procedures or because the programmer did not fully specify
all the necessary invariants.

We can also use this example program to contrast Deputy with
safe C type systems based on fat pointers [17, 21]. In such systems,
the formal argument buf and the local tmp might be represented
as two-word structures carrying the pointer and its length. In con-
trast, Deputy requires no changes to the representation of pointers
and can therefore process the function sum without processing the
call sites. This approach represents a crucial advantage over other
tools, because it allows the programmer to use an incremental and
modular strategy for porting existing code, starting with the more
error-prone modules first. Another advantage of the dependent type
strategy is that the metadata used in assertions is written in terms
of the data that the program itself manipulates, thus allowing the
optimizer to take advantage of the checks already present in the
original program. In contrast, if we use a fat pointer representation
for buf in our example, the optimizer would not be able to take ad-
vantage of the conditional in line 3 to eliminate the assertion for the
dereference of buf. These benefits have allowed us to apply Deputy
incrementally to modular software such as Linux device drivers and
TinyOS components, as described in Section 5.

Interestingly, the automatic dependency generation feature of
Deputy introduces a fat representation for locals, whereas for data
structures, function parameters, and globals, the programmer must
specify how to compute the metadata from data already existing
in the program. Only if this metadata is absent, or not present in a
fashion usable by Deputy, must the programmer change the origi-
nal code. Using dependent types for globals along with automatic
dependency generation for locals appears to be a good compromise
in terms of usability and annotation burden, as we discuss further
in our experimental results (Section 5).

3. Dependent Type Framework
In this section, we present the key principles of our dependent type
system in terms of a small imperative language. Specifically, we
show how to handle mutation in the presence of dependent types
and how we use hybrid type checking to allow more expressive
dependent types. Finally, we show how dependent types can be
generated automatically. None of this material is specific to C.

We present our type system in several stages. We start with
a simple language that demonstrates the mutation rule alone, and
we state our main soundness theorem for this core language. Then
we extend the language and type system with a rule for parallel
assignment, which in turn allows us to present our approach to
automatically generating the dependent types for local variables.
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Constructors C ::= int | ref | . . .
Types τ ::= C | τ1 τ2 | τ e
Kinds κ ::= type | type → κ | τ → κ
L-expressions ` ::= x | ∗ e
Expressions e ::= n | ` | e1 op e2

Commands c ::= skip | c1; c2 | ` := e | assert(γ) |
let x : τ = e in c | let x = new τ(e) in c

Predicates γ ::= e1 comp e2 | true | γ1 ∧ γ2

x, y ∈ Variables n ∈ Integer constants
op ∈ Binary operators comp ∈ Comparison operators

Figure 2. The grammar for a simple dependently-typed language.

Finally, we extend the type system with support for dependently-
typed structures and function calls.

3.1 Language
Although our implementation uses the concrete syntax of C, as
shown in the previous section, for the purposes of our formalism
we use the simpler language shown in Figure 2. In this language,
types are specified using type constructors applied to some number
of other types or expressions. Constructors can be viewed as type
families indexed by other types or by expressions. The built-in con-
structors are the nullary type constructor “int” (a prototypical base
type) and the unary type constructor “ref”. The “ref” constructor
allows the creation of types such as “ref int”, which is an ML-style
reference to an integer; this reference type is introduced here so
that we can show how our type system works in the presence of
memory reads and writes. In later sections, we will introduce ad-
ditional type constructors, such as more expressive pointer types.
The built-in constructors do not yield dependent types, but the ad-
ditional constructors will.

Types are classified into kinds. The kind “type” characterizes
complete types, whereas the functional kinds characterize type
families that have to be applied to other types, or to expressions of
a certain type, to eventually form complete types. The kind of each
constructor is given by the mapping “kind”; so far, this mapping is
defined as follows:

kind(int) = type
kind(ref) = type → type

To show how this system can be extended with additional type
constructors, consider the count annotation used in Figure 1. To
represent this type, we can introduce the constructor “array” with
kind type → int → type, such that “array τ elen” is the type of
arrays of elements of type τ and length elen . In the concrete syntax
this type is written as “τ * count(elen)”.

The remainder of this language is standard. Note that ∗ rep-
resents pointer dereference, as in C. Also note that assertions are
present only for compilation purposes and do not appear in the in-
put to Deputy. Finally, note that we omit loops and conditionals,
which are irrelevant to our flow-insensitive type system.

3.2 Type Rules
In this section, we present the type rules for the core language.
Figure 3 shows these rules and summarizes the judgment forms
involved.

Our strategy for handling mutation in the presence of depen-
dent types relies on two important components. First, we use a typ-
ing rule inspired by the Hoare axiom for assignment to ensure that
each mutation operation preserves well-typedness of the state. Sec-
ond, dependencies in types are restricted such that we can always
tell statically which types might be affected by each mutation op-
eration. We restrict types to contain only expressions formed us-

Γ L̀ τ :: κ
In type environment Γ, τ is a local, well-formed
type with kind κ.

(TYPE CTOR)

Γ L̀ C :: kind(C)

(TYPE EXP)
Γ L̀ τ :: (τ ′ → κ) Γ L̀ e : τ ′

Γ L̀ τ e :: κ

(TYPE TYPE)
Γ L̀ τ1 :: (type → κ) ∅ L̀ τ2 :: type

Γ L̀ τ1 τ2 :: κ

Γ L̀ e : τ
In type environment Γ, e is a local, well-typed
expression with type τ .

(LOCAL NAME)
Γ(x) = τ

Γ L̀ x : τ

(LOCAL NUM)

Γ L̀ n : int

(LOCAL INT ARITH)
Γ L̀ e1 : int
Γ L̀ e2 : int

Γ L̀ e1 op e2 : int

Γ ` e : τ ⇒ γ
In type environment Γ, e is a well-typed expres-
sion with type τ , if γ is satisfied at run time.

(VAR)
Γ(x) = τ

Γ ` x : τ ⇒ true

(NUM)

Γ ` n : int ⇒ true

(INT ARITH)
Γ ` e1 : int ⇒ γ1 Γ ` e2 : int ⇒ γ2

Γ ` e1 op e2 : int ⇒ γ1 ∧ γ2

(DEREF)
Γ ` e : ref τ ⇒ γ

Γ ` ∗e : τ ⇒ γ

Γ ` c ⇒ c′
In type environment Γ, command c compiles to
c′, where c′ is identical to c except for added
assertions.

(SKIP)

Γ ` skip ⇒ skip

(SEQ)
Γ ` c1 ⇒ c′1 Γ ` c2 ⇒ c′2

Γ ` c1; c2 ⇒ c′1; c
′
2

(VAR WRITE)
x ∈ Dom(Γ)

for all (y : τy) ∈ Γ, Γ ` y[e�x] : τy[e�x] ⇒ γy

Γ ` x := e ⇒ assert(
V

y∈Dom(Γ)γy); x := e

(MEM WRITE)
Γ ` e1 : ref τ ⇒ γ1 Γ ` e2 : τ ⇒ γ2

Γ ` ∗e1 := e2 ⇒ assert(γ1 ∧ γ2); ∗ e1 := e2

(LET)
x /∈ Dom(Γ) Γ, x : τ L̀ τ :: type

Γ ` e : τ [e�x] ⇒ γ Γ, x : τ ` c ⇒ c′

Γ ` let x : τ = e in c ⇒ assert(γ); let x : τ = e in c′

(ALLOC)
x /∈ Dom(Γ) ∅ L̀ τ :: type

Γ ` e : τ ⇒ γ Γ, x : ref τ ` c ⇒ c′

Γ ` let x = new τ(e) in c ⇒ assert(γ); let x = new τ(e) in c′

Figure 3. The four judgments used by Deputy’s type system and
the core type checking rules for each.
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ing constants, local variables, and arbitrary arithmetic operators. In
other words, we do not allow memory dereferences in types.1 We
refer to these restricted notions of expressions and types as local ex-
pressions and local types. Our type rules will require that all types
written by the programmer be local types.

First, we consider the well-formedness rules for types. Let Γ
be a mapping from variables to their types. We say that a type
τ is well-formed in Γ if τ depends only on the variables in Γ,
and we write Γ L̀ τ :: κ to indicate that in Γ, τ is a local,
well-formed type with kind κ. The type rules for this judgment
are shown at the top of Figure 3 and are mostly standard. One
notable requirement is that type arguments must be well-formed
in the empty environment, as shown in rule (TYPE TYPE), whereas
expression arguments must be well-typed in Γ, as shown in rule
(TYPE EXP). This conservative restriction is essential for the “ref”
constructor. If we allowed variables in Γ to appear in the base type
of a reference, then we would need perfect aliasing information to
ensure that we can find all references to a certain location when its
type is invalidated through mutation.

We also provide a set of rules for local expressions. The judg-
ment Γ L̀ e : τ says that in environment Γ, e is a local, well-typed
expression with type τ . The rules for local expressions are standard.

We have a separate judgment for general (i.e., non-local) expres-
sions. This judgment, written Γ ` e : τ ⇒ γ, says that in environ-
ment Γ, if γ is satisfied at run time, then e is a well-typed expres-
sion with type τ . The condition γ is a boolean predicate that must
hold in order for the judgment to be valid. This predicate is gener-
ated during type checking and will be inserted in the instrumented
program as run-time checks unless it can be discharged statically.

The rules presented in Figure 3 do not generate any interesting
guard conditions themselves. Our intent is that an instantiation of
this type system will provide additional type constructors whose
typing rules include non-trivial guards. For example, to access
arrays using the array constructor introduced before, we might add
new typing rules for pointer arithmetic and dereference:

(ARRAY DEREF)
Γ ` e : array τ elen ⇒ γe

Γ ` ∗e : τ ⇒ γe ∧ (0 < elen)

(ARRAY ARITH)
Γ ` e : array τ elen ⇒ γe Γ ` e′ : int ⇒ γe′

Γ ` e + e′ : array τ (elen − e′) ⇒ γe ∧ γe′ ∧ (0 ≤ e′ ≤ elen)

These rules are responsible for the assertions generated in line 4
and line 8 in Figure 1. Note that we allow zero-length arrays to be
constructed, but we check for this case at dereference; this approach
is useful in programs that construct pointers to the end of an array
as allowed by ANSI C. We might also add a coercion rule, allowing
long arrays to be used where shorter arrays are expected:

(ARRAY COERCE)
Γ ` e : array τ elen ⇒ γe Γ ` e′len : int ⇒ γe′

len

Γ ` e : array τ e′len ⇒ γe ∧ γe′
len
∧ (0 ≤ e′len ≤ elen)

In our implementation, we ensure that type checking is syntax-
directed by invoking the coercion rules only from the rules for
commands, which are discussed below.

The judgment for checking commands is responsible for insert-
ing into the program the guard conditions generated by the expres-
sion rules. This judgment, written Γ ` c ⇒ c′, says that in en-
vironment Γ, command c is compiled to command c′. These two

1 In the full version of Deputy for C, local expressions also exclude function
calls, references to fields of other structures, and variables whose address is
taken.

commands have identical semantics; however, c′ contains asser-
tions with the guard conditions necessary to execute safely.

The first typing rule for commands, (VAR WRITE), is responsible
for updates to variables in the presence of dependent types and is
one of the main contributions of our type system. This rule says that
when updating a variable x with the value of expression e, we check
all variables y in the current environment to see that their types still
hold after substituting e for x. This rule essentially verifies that the
assignment does not break any dependencies in the current scope.

The intuition for this rule is based upon the Hoare axiom for
assignment, which says that for a given predicate φ, the weakest
precondition of the command x := e with respect to φ is φ[e�x].
If we view the type environment Γ as a predicate on the state of the
program, the (VAR WRITE) rule states that the predicate “Γ” implies
the weakest precondition of x := e with respect to “Γ”. Section 3.3
makes this intuition more precise.

To understand this rule in more detail, consider the array exam-
ple once again. Suppose we have the following code:

let n : int = . . . in
let a : array int n = . . . in
n := n− 1

In this example, we have an integer variable n and an array
variable a with length n. Decrementing n should be safe as long
as n > 0, because if a is an array of length n, it is also an array of
length n− 1.

When we apply the (VAR WRITE) rule to this assignment, the
premises are Γ ` n[n− 1�n] : int[n− 1�n] ⇒ γn and Γ `
a[n− 1�n] : (array int n)[n− 1�n] ⇒ γa. The first premise is
trivial, with γn = true. The second premise is more interesting.
After substitution, it becomes Γ ` a : array int (n− 1) ⇒ γa. If
we apply the (ARRAY COERCE) rule shown above, we can derive
this judgment with γa = 0 ≤ n−1 ≤ n. After static optimization,
this check can be reduced to 0 ≤ n − 1, which is precisely the
check we expected in the informal discussion above.2

As a second example, consider line 12 in Figure 1. Here buf has
type “array int (end− buf)”, so the (VAR WRITE) rule requires
Γ ` buf[tmp�buf] : array int (end− buf)[tmp�buf] ⇒ γbuf,
or Γ ` tmp : array int (end− tmp) ⇒ γbuf. Applying the
(ARRAY COERCE) rule gives γbuf = “0 ≤ end− tmp ≤ tmplen”,
as seen on line 11.

Generally speaking, the (VAR WRITE) rule allows us to verify
that dependencies in the local environment have not been broken,
and the local-type restriction on base types of pointers ensures that
there are no dependencies from the heap. In short, a combination
of the Hoare-inspired assignment rule and the local type restriction
have allowed us to verify mutation in the presence of dependent
types.

The remainder of the rules for commands are comparatively
simple. The (MEM WRITE) rule requires no reasoning about de-
pendencies because the well-formedness rule for reference types
requires that the contents of a reference be independent of its en-
vironment. The (LET) rule is standard except for the substitution
when checking the expression e; this substitution follows similar
logic to the assignment rule, allowing for the possibility of self-
dependencies. (Note that we need not check the rest of the envi-
ronment, since none of the variables in Γ can depend on the new
variable x.) Finally, the (ALLOC) rule resembles the (LET) rule but
with no substitution required thanks to the restrictions on reference
types.

2 We take care to account for possible overflow of machine arithmetic.
However, this is not hard when reasoning about array indices that must be
bound by the length of an array.
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3.3 Soundness
We sketch here the key soundness results, with the goal of exposing
the various formal requirements on the framework for ensuring
sound handling of mutation in presence of dependent types.

Let Val be the set of machine values, with Addr a synonym
used when dealing with memory addresses. Let Var be the set of
variable names. The state of the execution ρ contains at least three
elements: ρE : Var → Val giving the value of each variable,
ρS : Addr → Val representing the contents of memory (i.e., the
store), and ρA : Addr → τ indicating the type of each memory
location (i.e., the allocation state). We define a distinguished ρfail

value to be the unique state resulting from a failed assertion.
The evaluation of expressions and commands is standard: [[e]]ρ

denotes the value v ∈ Val of expression e in state ρ, and [[c]]ρ
denotes the state ρ′ that results when command c executes in state
ρ. We define [[c]]ρfail = ρfail for all commands c. We assume
termination of all commands, in order to simplify the presentation.

An essential element of the formalization is that for each type
τ we can define the set of values of that type in state ρ as [[τ ]]ρ, as
follows:

[[int]]ρ = Val
[[ref]]ρ = λt.{a ∈ Dom(ρA)|t = [[ρA(a)]]ρ}

[[τ1 τ2]]ρ = ([[τ1]]ρ)([[τ2]]ρ)
[[τ e]]ρ = ([[τ ]]ρ)([[e]]ρ)

In particular, note that each constructor C must have some
meaning given by [[C]]ρ. If additional constructors are added, the
proof requires that their meanings be given as well; in some cases,
these definitions may require an augmented notion of state (e.g.,
with a history of the locking operations when we have a type
constructor characterizing the state of locks). The fact that types
have state-based meanings allows us to view the type environment
as a predicate on the state of the program, which is essential for the
adequacy of using Hoare’s assignment axiom for type checking.

We say that a type environment Γ is well-formed if for all
x ∈ Dom(Γ), Γ L̀ τ :: type. We say that an execution state ρ is
well-formed if Dom(ρS) = Dom(ρA) and for all a ∈ Dom(ρA),
we have ρS(a) ∈ [[ρA(a)]]ρ and ∅ L̀ ρA(a).

We say that ρ |= Γ if ρ and Γ are well-formed and if for all
x ∈ Dom(Γ), [[x]]ρ ∈ [[Γ(x)]]ρ. Finally, we say that ρ |= γ holds if
predicate γ is satisfied in state ρ.

Our soundness theorems (provable by induction on the structure
of the typing derivations) are as follows:

THEOREM 1 (Soundness for expressions). If ρ |= Γ, Γ ` e : τ ⇒
γ, and ρ |= γ, then [[e]]ρ ∈ [[τ ]]ρ.

THEOREM 2 (Soundness for commands). If ρ |= Γ, Γ ` c ⇒ c′,
then [[c′]]ρ = ρ′ and either ρ′ = ρfail or ρ′ |= Γ.

The interesting cases in the proof are for variable update and
memory write. In the former case, the proof works as for the
soundness of Hoare’s assignment with Γ playing the role of an
invariant predicate on the state (by means of the ρ |= Γ judgment).
In the case of memory write the proof relies on the fact that there are
no dependencies on the contents of store locations because the base
type for the “ref” constructor must have no external dependencies.
A sketch of the proof is shown in the appendix.

Finally, we know that the only change to the behavior of the
program is the possibility of failed assertions:

THEOREM 3 (Correctness for commands). If Γ ` c ⇒ c′, [[c′]]ρ =
ρ′, and ρ′ 6= ρfail, then [[c]]ρ = ρ′.

3.4 Parallel assignment
One potentially troublesome issue with mutation and dependent
types is the order in which several dependent variables are mutated.

Consider again the declaration “a : array int n” and the sequence of
assignments “a := a′; n := n′”, where a′ has type “array int n′”.
This sequence of assignments is sound, but the type invariant for a
(i.e., “a has length n”) may be temporarily violated between these
two assignments. Because our type system is flow-insensitive, it
may report an error after the first assignment. In this example, the
assignment a := a′ will fail if n′ < n. Changing the order of these
assignment statements does not help; in that case, the assignment
n := n′ would fail if n′ > n.

To support this operation, we add parallel assignment to the lan-
guage. Modifying multiple local variables simultaneously allows
programmers to avoid temporarily violating a dependent type rela-
tionship that holds between the variables. Specifically, we introduce
the command x1, . . . , xn := e1, . . . , en. The runtime semantics of
this operation are standard: e1 through en are evaluated before any
variable is modified, and then each xi gets the value of ei.

We type check this operation by generalizing the (VAR WRITE)
rule: for each variable y in the environment, we check that its
type still holds after substituting the new values of x1 through xn.
Formally, the type rule is as follows:

(PARALLEL VAR WRITE)
x1, . . . , xn distinct {x1, . . . , xn} ⊆ Dom(Γ)

for all (y : τy) ∈ Γ,
Γ ` y

ˆei�xi

˜
1≤i≤n

: τy

ˆei�xi

˜
1≤i≤n

⇒ γy

Γ ` x1, . . . , xn := e1, . . . , en ⇒
assert(

V
y∈Dom(Γ)γy); x1, . . . , xn := e1, . . . , en

We use the notation
ˆei�xi

˜
1≤i≤n

to mean the parallel substitution
of each xi with ei.

Although parallel assignment syntax is unavailable in C, we can
gain some of the benefit of this construct by automatically grouping
certain adjacent assignments into parallel assignments, provided
that the proper independence relationships hold. In addition, paral-
lel assignments are frequently introduced by the automatic depen-
dency transformation, which is discussed in the following section.

3.5 Automatic Dependencies
Until now, we have presented the Deputy type checker under the
assumption that all dependent types were fully specified. To reduce
the programmer burden, our type system includes a feature called
automatic dependencies, which automatically adds missing depen-
dencies of local variables. As described in Section 2, this feature
operates as a preprocessing step before type checking.

We allow local variables to omit expressions in their depen-
dent types. For example, a variable might be declared to have type
“array int”, where the length of the array is unspecified. For every
missing expression in a dependent type of a local variable, we in-
troduce a new local variable that is updated along with the original
variable. For example, in Figure 1, we added tmplen to track the
length of tmp, updating it as appropriate. Note that dependent types
with expressions omitted will have an incomplete type whose kind
is τ1 → . . . → τn → type for n ≥ 1.

Formally, we maintain a mapping ∆ from variables to the list
of new variables that were added to track their dependencies. If a
variable x had a complete type in the original program, ∆(x) is the
empty list. We define a judgment Γ; ∆ ` c c′ which says that in
the context Γ; ∆, the command c can be transformed into command
c′ such that all types in c′ are complete and such that c′ computes
the same result as c.

The interesting rules for deriving this judgment are given in
Figure 4. In the (AUTO LET) rule, we add new variables to track
any missing dependencies for x. We initialize these fresh variables
using the dependencies of the initial value e, and we record in
∆ the fact that variables x1 through xn store x’s dependencies.
To determine the number and types of the automatic variables
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(AUTO LET)
Γ L̀ τ :: τ1 → . . . → τn → type Γ ` e : τ e1 . . . en ⇒ γ

τ ′ = τ x1 . . . xn x1, . . . , xn fresh
(Γ, x1 : τ1, . . . , xn : τn, x : τ); (∆, x 7→ (x1, . . . , xn)) ` c c′

Γ; ∆ ` let x : τ = e in c 
let x1 : τ1 = e1 in . . . let xn : τn = en in let x : τ ′ = e in c′

(AUTO VAR WRITE)
Γ(x) = τ x1 . . . xn ∆(x) = (x1, . . . , xn)

Γ ` e : τ e1 . . . en ⇒ γ

Γ; ∆ ` x := e 
x, x1, . . . , xn := e, e1, . . . , en

Figure 4. Rules for automatic dependencies.

x1 through xn, we look at the kind of the incomplete type. For
example, the incomplete type “array τ” has kind int → type, so
for arrays we will add a single automatic variable of type int.

In the (AUTO VAR WRITE) rule, we handle assignment to a vari-
able that may have automatic dependencies. Using parallel assign-
ment, we update all of the automatic variables associated with x.
Note that we invoke the type checking judgment only for the pur-
pose of recovering the expressions appearing in the type of the
right-hand side of the assignment.

For example, consider the following code fragment in which x
has an incomplete type:

let a1 : array int n1 = . . . in
let a2 : array int n2 = . . . in
let x : array int = a1 in
if (. . .) then x := a2;
∗(x + 3) := 0;

On the last line, Deputy needs to know the length of array x
so that it can insert the appropriate check. One solution would be
a static analysis to determine the length of x, but this analysis is
difficult since x could point to either a1 or a2. Instead, our prepro-
cessor inserts the new variable nx to track x’s length dynamically.
Here is the segment after processing by the automatic dependency
step, with the new code underlined:

let a1 : array int n1 = . . . in
let a2 : array int n2 = . . . in
let nx : int = n1 in
let x : array int nx = a1 in
if (. . .) then x, nx := a2, n2;
∗(x + 3) := 0;

Now the assertion needed on the last line is simply 0 ≤ 3 < nx.
Although this transformation can potentially insert many new

variables into the program, these variables can often be eliminated
by the optimizer. Copy propagation is a particularly useful opti-
mization here, since it can eliminate automatic variables in the
common case when they are only assigned once. At the same time,
Deputy’s automatic dependencies are general enough to handle sit-
uations such as the example above, where static analysis would
be hard. Separating preprocessing from optimization allows us to
keep the automatic dependency transformation simple and power-
ful, while still taking advantage of static analysis where possible.

This transformation also recovers some of the flow-sensitivity
that is absent in the core type system. In many cases, it is diffi-
cult to annotate a variable with a single dependent type that is valid
throughout a function. By adding fresh variables that are automati-
cally updated with the appropriate values, we provide the program-
mer with a form of flow-sensitive dependent type.

(TYPE STRUCT)
for all 1 ≤ i ≤ n, (f1 : τ1, . . . fn : τn) L̀ τi :: type

Γ L̀ struct {f1 : τ1; . . . fn : τn} :: type

(STRUCT LITERAL)

for all 1 ≤ i ≤ n, Γ ` ei : τi

h
ej�fj

i
1≤j≤n

⇒ γi

γ =
V

1≤j≤nγi

Γ ` {f1 = e1; . . . ; fn = en} : struct {f1 : τ1; . . . fn : τn} ⇒ γ

(STRUCT READ)
Γ ` ` : struct {f1 : τ1; . . . fn : τn} ⇒ γ`

Γ ` `.fi : τi

h
`.fj�fj

i
1≤j≤n

⇒ γ`

(STRUCT WRITE)
Γ ` ` : struct {f1 : τ1; . . . fn : τn} ⇒ γ`

for all 1 ≤ j ≤ n, Γ ` ρ(fj) : ρ(τj) ⇒ γj

where ρ(e′) = e′
h
e�fi

, `.fj�fj

i
1≤j≤n,i6=j

Γ ` `.fi := e ⇒ assert(γ` ∧
V

1≤j≤nγj); `.fi := e

Figure 5. Structure type checking rules.

3.6 Structures
So far, we have presented a type system that supports dependencies
among mutable local variables. Our type annotations also provide
a natural way to express dependencies among structure fields. The
strategy used here is the same as the strategy used with local
variables: by restricting the scope of dependencies, we ensure that
when a value is modified, the compiler can enumerate all of the
locations that might depend on that value.

To add structures to our language, we extend the grammar for
types, l-expressions, and expressions:

τ ::= . . . | struct {f1 : τ1; . . . fn : τn}
` ::= . . . | `.f
e ::= . . . | {f1 = e1; . . . ; fn = en}

The new type “struct {f1 : τ1; . . . fn : τn}” defines a muta-
ble record type in which the ith field has label fi and type τi. The
l-expression `.f accesses a structure field with name f . The expres-
sion {f1 = e1; . . . ; fn = en} is a structure literal that initializes
field fi to expression ei.

Field types can depend on other fields of the same structure, but
we maintain the invariant that structure fields do not depend on,
and are not depended on by, any value outside of the structure. We
use the field names as variables to express dependencies between
fields, as in the following declaration:

y : struct {f1 : array int (f2 + 1); f2 : int}

Here the field f1 contains an array whose length is one greater
than the value of field f2.

Figure 5 shows the rules for type checking structures. The
(TYPE STRUCT) rule describes well-formed structure types. When
checking that field types are well-formed, the environment contains
the names and types of the fields in the current structure. Thus, field
types can depend only on other fields in the same structure.

The (STRUCT LITERAL) rule shows how to check a structure
literal, and the (STRUCT READ) rule shows how to type check field
reads. Whenever a field name appears in the type being read, we
replace it with an expression denoting the corresponding field of
the structure being accessed. Using the example above, a read from
y.f1 would have type “array int (y.f2 + 1)”.
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(FUNCTION DEFINITION)
for all 1 ≤ i ≤ n, (x1 : τ1, . . . , xn : τn) L̀ τi :: type

(x1 : τ1, . . . , xn : τn) L̀ τret :: type
all paths in c end with a return x′1, . . . , x

′
n not used in c

Γ = (x1 : τ1, . . . , xn : τn) F = (x1 : x′1, . . . , xn : x′n)
Γ; F ` c ⇒ c′

` fn(x1 : τ1, . . . , xn : τn) : τret = c ⇒
fn(x1 : τ1, . . . , xn : τn) : τret =

let x′1 : τ1 = x1 in . . . let x′n : τn = xn in c′

(FUNCTION RETURN)
the current function has signature (x1 : τ1, . . . , xn : τn) → τret

Γ ` e : τret

h
F (xi)�xi

i
⇒ γ

Γ; F ` return e ⇒ assert(γ); return e

(FUNCTION CALL)
fn has signature (x1 : τ1, . . . , xn : τn) → τret

for all 1 ≤ i ≤ n, Γ ` ei : τi

ˆej�xj

˜
1≤j≤n

⇒ γi

x /∈ Dom(Γ) τx = τret

ˆej�xj

˜
1≤j≤n

Γ L̀ τx :: type Γ, x : τx; F ` c ⇒ c′

Γ; F ` let x = fn(e1, . . . , en) in c ⇒
assert(

V
1≤i≤nγi); let x = fn(e1, . . . , en) in c′

Figure 6. Rules for type checking function definitions and calls.

The (STRUCT WRITE) rule is analogous to the (VAR WRITE)
rule. When a field is changed, we check all of the other fields in
the current environment to make sure that any dependencies are
satisfied.

3.7 Function Calls
Deputy also supports dependent function types. As with local vari-
ables, the types of formal parameters can depend on other for-
mals. The return type is also allowed to depend on the formals.
To support functions calls we introduce the command “let x =
fn(e1, . . . , en) in c” for function call and “return e” for function
return.

Figure 6 extends our type system with functions. Consider the
(FUNCTION DEFINITION) rule, which shows the compilation of a
function named fn. Return types can depend on the initial values
of the parameters, so we must save a copy of these values before
executing the function body, which could modify the formal vari-
ables. We change the environment of our command judgment to
add a map F from formal variables to the initial values of those
formals. This map is only used by the return command; all other
commands pass it along unchanged.

The (FUNCTION CALL) rule shows how to check a function
call. The arguments to the function are type checked according to
the specified type signature, and the return type depends on the
actual values of the arguments. Notice the similarity between type
checking a function call and type checking a parallel assignment.

We require that the result of the function call be placed in a
fresh variable x, rather than in an existing variable. We do not
consider function calls to be expressions because the (VAR WRITE)
rule requires that expressions be pure. In our implementation, we
automatically create a fresh temporary to store the result of each
function call.

4. Dependent Types for C
We have applied the techniques described in the previous section to
check various type safety properties of annotated C programs. Sec-
tion 4.1 presents a dependent type constructor that assures pointer

(LOCAL PTR ARITH)
Γ L̀ e1 : ptr τ lo hi Γ L̀ e2 : int

Γ L̀ e1 ⊕ e2 : ptr τ lo hi

(LOCAL INT COERCION)
Γ L̀ e : ptr τ lo hi

Γ L̀ e : int

(PTR ARITH)
Γ ` e1 : ptr τ lo hi ⇒ γ1 Γ ` e2 : int ⇒ γ2

Γ ` e1 ⊕ e2 : ptr τ lo hi ⇒
γ1∧γ2∧ (e1 6= 0)∧ (lo ≤ (e1⊕ e2) ≤ hi)

(PTR DEREF)
Γ ` e : ptr τ lo hi ⇒ γ

Γ ` ∗e : τ ⇒ γ ∧ (e 6= hi) ∧ (e 6= 0)

(PTR WRITE)
Γ ` ∗e1 : τ ⇒ γ1 Γ ` e2 : τ ⇒ γ2

Γ ` ∗e1 := e2 ⇒ assert(γ1 ∧ γ2); ∗e1 := e2

(PTR ALLOC)
x /∈ Dom(Γ) ∅ L̀ τ :: type Γ ` einit : τ ⇒ γinit

Γ L̀ elen : int Γ, x : ptr τ x (x⊕ elen) ` c ⇒ c′

Γ ` let x = new τ [elen](einit) in c ⇒
assert(γinit ∧ (elen > 0)); let x = new τ [elen](einit) in c′

(INT COERCION)
Γ ` e : ptr τ lo hi ⇒ γ

Γ ` e : int ⇒ γ

(NULL COERCION)
Γ ` e : ptr τ lo hi ⇒ γ

Γ ` e : ptr τ lo′ hi′ ⇒ γ ∧ (e = 0)

(PTR COERCION)
Γ ` e : ptr τ lo hi ⇒ γ

Γ ` e : ptr τ lo′ hi′ ⇒
γ ∧ (lo ≤ lo′ ≤ e ≤ hi′ ≤ hi)
∧ ((lo′ − lo) mod |τ | = 0)
∧ ((hi− hi′) mod |τ | = 0)

Figure 7. Bounded pointer type checking rules.

arithmetic is done correctly. This type constructor is a generaliza-
tion of the array example we presented earlier. Section 4.2 discusses
how Deputy can enforce safe usage of unions in C using the same
techniques, and Section 4.3 reviews other issue related to the C lan-
guage.

4.1 Pointer Bounds
This section describes the type constructor that Deputy uses to
support pointer arithmetic. We generalize the array example in the
previous section by using dependent types to denote the lower and
upper bounds of a memory region and by allowing arbitrary pointer
arithmetic within this region.

We add to our language a constructor “ptr”, where kind(ptr) =
type → int → int → type. The type “ptr τ lo hi” represents
a possibly-null pointer to an array of elements of type τ , where
lo and hi are expressions that indicate the bounds of this array.
Specifically, lo is the address of the first accessible element of the
array, and hi is the address of the first inaccessible element after
the end of the area. We also add to the language an operator ⊕
for C-style pointer arithmetic, which moves a pointer forwards or
backwards by a certain number of elements rather than bytes.

e ::= . . . | e1 ⊕ e2

The ⊕ operator may be used in local expressions.
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Using the ptr type, we can write the following examples of
Deputy’s bounded pointer types:

x : ptr int b (b⊕ 8) // 8 integer area starting at b
x : ptr int x (x⊕ n) // n integer area starting at x
x : ptr int x e // from x to e

In our actual implementation, Deputy represents these types using
C’s pointer syntax, with the pointer bounds appearing as annota-
tions on pointer types. Deputy uses the type “int * bound(a,b)”
to mean “ptr int a b”. Also, we provide syntactic sugar for common
annotations; for example, one could write the second declaration
above as “int * count(n) x”. (This count annotation is a slight
modification of the one presented in the overview.) For unannotated
pointers, we use the automatic dependency technique described in
Section 3.5.

Formally, we define the meaning of the bounded pointer type
constructor as follows:

DEFINITION 1 (Pointer types). A value v has type “ptr τ lo hi”
for some values lo and hi if either v = 0 or the following condi-
tions hold:

• lo ≤ v ≤ hi, and
• there exists an allocated area of memory containing elements of

type τ whose first byte is lo′ and whose last byte is hi′− 1 such
that lo′ ≤ lo and hi ≤ hi′, and

• v, lo, and hi, are correctly aligned relative to the elements in the
allocation area described above (i.e., (lo − lo′) mod |τ | = 0,
(v− lo′) mod |τ | = 0, and (hi− lo′) mod |τ | = 0, where |τ |
is the size of a τ object in bytes).

This definition allows us to conclude that if a value v has type
“ptr τ lo hi”, v 6= 0, and v 6= hi, then v points to the start of
a valid τ object. As in ANSI C, we allow a pointer to be equal
to the upper bound of its buffer even though such pointers must
not be dereferenced. Such pointers are needed for several common
programming idioms.

Figure 7 show the typing rules for the “ptr” constructor and its
associated operations.

The first two rules, (LOCAL PTR ARITH) and (LOCAL INT CO-
ERCION), show that pointer arithmetic and integer coercion are al-
lowed in local expressions. The former is important for many com-
mon idioms, as seen in the example types presented earlier. The
latter is useful because the kind of the “ptr” constructor requires
(for simplicity) that the bounds be specified as integers.

The (PTR ARITH) rule shows the checks required for pointer
arithmetic. Since the new pointer has the same bounds as the orig-
inal pointer, the checks simply verify that the new pointer is still
within bounds. Also, we ensure that we are not incrementing a null
pointer, since the result would violate our invariant.

The (PTR DEREF) rule verifies a pointer dereference by check-
ing that a pointer is non-null and that it does not point to the end of
the region. As argued above, these two conditions suffice to ensure
that the pointer points to a valid object of type τ . The (PTR WRITE)
rule is trivial, since the first premise invokes the (PTR DEREF) rule
to verify that e1 is safe to dereference.

The (PTR ALLOC) rule shows how allocation is checked. The
only run-time check required is to verify that we are allocating at
least one element; however, we must also verify that the base type
τ type checks in the empty environment, which ensures that it has
no external dependencies.

The (INT COERCION), (NULL COERCION), and (PTR COER-
CION) rules allow coercions to and from pointer types. The first
rule is trivial: any pointer can be safely considered an integer. The
second rule allows conversion between different pointer bounds if
the pointer is null, since a null pointer satisfies its invariant regard-
less of the bounds. Note that the null check is performed at run time,

which is far more flexible than a static check for a null pointer. Also
note that a similar rule could be added for converting zero integers
to a pointer type with arbitrary bounds. Finally, the pointer coercion
rule allows coercion between different bounds as long as the new
bounds are contained within the old bounds and are still aligned
appropriately.

Notice that there are two ways to coerce a pointer value to a
pointer type with different bounds: (NULL COERCION) or (PTR
COERCION). In general there’s no way to decide statically which
rule to apply, so our implementation combines them into a more
general rule that says you can convert e from one pointer type to
another if either e = 0 or the conditions in the (PTR COERCION)
rule hold.

This dependent pointer type is flexible enough to express a
wide variety of common C idioms for tracking pointer bounds. In
Section 5, we will discuss our experience using this dependent type
to annotate real-world code.

One common idiom not covered by this type is a null-terminated
pointer. Although we omit the details from this paper for reasons
of space, our implementation provides a variant of this bounded
pointer that allows for null-terminated pointers. These pointers
have a null-terminated sequence of elements above the upper
bound, and the rules for these pointers are updated to allow ac-
cess to these elements. Coercions are provided to convert between
the two bounded pointer types when possible.

4.2 Dependent Union Types
Deputy’s dependent type system can also be used to ensure safety
for C union types. Unions are used frequently in C code to cus-
tomize the use of memory areas. To ensure that unions are used
correctly, programmers often provide a “tag” that indicates which
union field is currently in use; however, the conventions for how
this tag is used vary from program to program. Our type system
provides dependent type annotations that allow the programmer to
specify for each union field the condition that must hold when that
field is in use.

To introduce unions, we add a family of new type constructors
called “unionn”, where n indicates the number of fields in the
union. This constructor takes n type arguments indicating the types
of each field of the union as well as n integer arguments indicating
whether the corresponding field of the union is currently active.
Thus, we write a union type as “unionn τ1 . . . τn e1 . . . en”,
where τi are the field types and ei are selector expressions. If
selector ej is nonzero, then the corresponding field with type τj

is the active field of the union. As usual, the selectors are local
expressions, so they can depend on other values in the current
environment just as pointer bounds do. Union fields are accessed
using the u.fi syntax, where fi indicates the ith field of the union.
We also add a union literal {fi = e}, which initializes the field fi

of the union to expression e. For simplicity, we do not have special
syntax for writing to a field of a union; rather, unions are updated
by overwriting the union with a new union literal.

An example of a union type is as follows:

x : struct { tag : int;
u : union2 int (ref int) (tag ≥ 2) (tag = 1)}

In this example, we have a structure containing a union and its
associated tag, which is a common idiom found in C programs.
The union x.u contains two fields: an integer and a reference to an
integer. The selector expressions indicate that the union contains an
integer when tag ≥ 2 and that it contains an integer reference when
tag = 1. Note that these selector expressions must be mutually
exclusive.

The following invariant describes how unions are handled in
Deputy.
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(UNION LITERAL)
Γ ` e : τi ⇒ γ for all j, Γ ` ej : int ⇒ γj

γ′ = γ ∧ (
V

1≤j≤nγj) ∧ (ei 6= 0) ∧ (
V

1≤j≤n,j 6=i(ej = 0))

Γ ` {fi = e} : unionn τ1 . . . τn e1 . . . en ⇒ γ′

(UNION ACCESS)
Γ ` ` : unionn τ1 . . . τn e1 . . . en ⇒ γ`

Γ ` `.fi : τi ⇒ γ` ∧ (ei 6= 0)

Figure 8. Typing rules for tagged unions.

DEFINITION 2 (Union types). If a value v has type
unionn τ1 . . . τn e1 . . . en, then these two conditions hold:

• at most one of the selector values is non-zero, and
• if ei is non-zero, then v is a value of type τi.

In Figure 8, we show the rules for type checking dependent
unions. In this case, we have only two rules, one governing union
literals and one governing union access. Note that well-formedness
of union types is handled by the general rules given in the core type
system.

The (UNION LITERAL) rule shows how union literals are co-
erced to a certain union type. The guard condition verifies that the
selector expressions have been set properly for the desired union
field. The (UNION ACCESS) rule shows that a field can be accessed
if its selector is nonzero.

When updating a union, we use the standard l := e syntax
where e will usually be a union literal. Parallel assignment is often
helpful in this case for setting the tag of a union along with the
value of the union itself.

4.3 Other C Language Constructs
In addition to the dependent type constructors for bounded point-
ers and tagged unions, we support null-terminated arrays, taking
the address of structure fields and variables (so long as there are
no dependencies between those fields or variables and other nearby
fields or variables), and limited use of printf-style variable argu-
ment functions.

The following sources of unsoundness are not currently handled
by Deputy:

• Deallocation. Currently, we trust that Deputy programs will use
malloc and free correctly. This problem is orthogonal to the
problem of checking bounded pointers and tagged unions, and
it could be solved by use of a garbage collector [4] or other
methods [9]. Similarly, we allow programs to take the address
of stack-allocated variables, but we do not prevent programs
from accessing such objects after the stack frame has been
deallocated.

• Non-printf-style variable-argument functions. We do not
check variable-argument function calls unless they use the
printf convention.

• Inline assembly. Deputy ignores inline assembly. Much like
code that resides in other modules, Deputy trusts that this code
maintains the invariants of the dependent types in the program.

• Trusted code. Deputy’s type checker will skip any code that has
been annotated as trusted. This annotation is used, for example,
when a program performs a cast that Deputy cannot verify as
safe. When we present our experiments, we will indicate how
often we needed to use this escape hatch.

Deputy does not provide special support for multithreaded code;
however, if all values with dependent types are correctly synchro-

nized in the original code, the resulting program will be thread-safe
as well.

Deputy supports separate compilation, and the object files it
produces can be linked with object files produced by other C com-
pilers. As mentioned earlier, this feature makes it easy to apply
Deputy to a program incrementally by annotating one file at a time.

5. Experiments
We implemented Deputy using the CIL infrastructure [22]. Our im-
plementation is 20,587 lines of OCaml code, not counting the CIL
front-end. Our implementation uses the type system described in
this paper to ensure partial safety for C programs. Given an anno-
tated program, Deputy creates automatic bounds variables where
needed, adds assertions as dictated by the type rules, and uses sev-
eral flow-sensitive, intraprocedural optimization passes to remove
those assertions. The resulting program is then emitted as C code
and compiled by gcc.

To test Deputy we annotated a number of standard benchmarks,
including Olden, Ptrdist, and selected tests from the SPEC CPU
and MediaBench suites [2, 5, 19, 25], as seen in Table 1. For each
test, we replaced gcc with Deputy when compiling the program.
Deputy emits errors whenever the program has not been correctly
annotated; these annotations must be added by hand. Once the pro-
gram compiles, the programmer typically needs to add or modify
annotations in order to eliminate run-time errors that are due to in-
sufficient or incorrect annotations.

We also used Deputy to enforce type safety in version 2 of the
TinyOS [16] sensor network operating system. We tested three sim-
ple demo applications: periodic LED blinking (Blink), forwarding
radio packets to and from a PC (BaseStation), and simple periodic
data acquisition (Oscilloscope). TinyOS is written in a C dialect
(nesC [13]) that is normally compiled to C and then fed to gcc.
As with the other benchmarks, we replace this last step by Deputy.
TinyOS is concurrent, but the nesC compiler enforces the use of
atomic statements to protect shared data. Additionally, TinyOS in-
cludes no dynamic memory allocation or variable-argument func-
tions. Thus, with the exception of inline assembly and trusted code,
Deputy enforces full memory safety for TinyOS programs.

Finally, we used Deputy on a number of Linux device drivers
as part of the SafeDrive project [30]. The drivers converted include
e1000, tg3, usb-storage, intel8x0, emu10k1, and nvidia, to-
taling over 65,000 lines of code. We changed less than 4% of these
lines in order to use Deputy and the SafeDrive recovery mecha-
nism, and we observed a 4-23% increase in kernel CPU utiliza-
tion. Because Deputy allows us to annotate the driver API with-
out changing the binary API, drivers compiled with Deputy can be
loaded by a kernel compiled with gcc, which is a significant advan-
tage over earlier tools such as CCured [21]. In addition, Deputy’s
language-based approach to the problem of driver isolation and re-
covery provides better performance and finer-grained isolation than
previous hardware-based approaches such as Nooks [26] and Xen
[3]. The remainder of this section will focus on the benchmarks and
TinyOS experiments; detailed performance results for Linux device
drivers are available in the SafeDrive paper [30].

5.1 Annotation Burden
Deputy will add automatic dependencies to all local variables and
cast expressions. Pointer types in any other locations (including
function types, global variables, nested pointers, and structure
fields) require bounds annotations if they could point to an ar-
ray. Most of these annotations use the syntactic sugar “count(n)”
mentioned in Section 4.1, but a few will use the full generality of
the “ptr” constructor, with both a lower and upper bound. If an an-
notation is missing on a pointer type that requires one, we assume
it points to a single object and has the annotation count(1).
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Benchmark Lines Lines Exec. Time
Changed Ratio

SPEC
go 29722 80 (0.3%) 1.11
gzip 8673 149 (1.7%) 1.23
li 9636 319 (3.3%) 1.50

Olden
bh 1907 139 (7.3%) 1.21
bisort 684 24 (3.5%) 1.01
em3d 585 45 (7.7%) 1.56
health 717 15 (2.1%) 1.02
mst 606 66 (10.9%) 1.02
perimeter 395 3 (0.8%) 0.98
power 768 20 (2.6%) 1.00
treeadd 377 40 (10.6%) 0.94
tsp 565 4 (0.7%) 1.02

Ptrdist
anagram 635 36 (5.7%) 1.40
bc 7395 191 (2.6%) 1.30
ft 1904 58 (3.0%) 1.03
ks 792 16 (2.0%) 1.10
yacr2 3976 181 (4.6%) 1.98

MediaBench I
adpcm 387 15 (3.9%) 1.02
epic 3469 240 (6.9%) 1.79

TinyOS
Blink 74 0 (0%) 1.04
BaseStation 282 0 (0%) 1.17
Oscilloscope 149 3 (2.0%) 1.13
OS components 11698 48 (0.4%) –

Table 1. Deputy benchmarks. For each test, we show the size of the
benchmark including comments, the number of lines we changed
in order to use Deputy, and the ratio of the execution time under
Deputy to the original execution time. “OS components” are the
parts of TinyOS used by the three TinyOS programs.

Table 1 summarizes the results of Deputy on our benchmarks.
The first column indicates the size of each benchmark, and the
second column indicates the number of lines that we needed to
modify or add, including both annotations and changes to the code
itself. The third column shows the overhead of Deputy (discussed
further below).

The number of changed lines varied widely by program, de-
pending on the quality of the original code and how extensively it
uses arrays and unions. Many of the changes involved refactoring
the code to avoid unsafe constructs such as bad casts or variable
argument functions. The statistics here do not include annotations
added to the system-wide header files. In some cases we were un-
able to fix the unsafe code, so we added “trusted” annotations to
tell Deputy’s type checker to ignore the bad code. Among the 19
non-TinyOS programs, we added 27 such annotations.

The TinyOS changes from Table 1 are mostly in OS components
(scheduler, sensors, timers, radio, and serial port). There were four
trusted casts to allow access to memory-mapped I/O locations,
and there were eight count annotations. The small number of
annotations is due in part to the use of Java-like interfaces to specify
TinyOS’s APIs; as a result one annotation is automatically applied
to many functions. One API change was necessary in TinyOS,
contributing 32 changed lines.

5.2 Performance
For the non-TinyOS programs, we measured the performance in
terms of execution time. The tests were run on a machine with two

Intel Xeon 2.40GHz CPUs running Linux 2.6.15.2. All tests were
run five times and averaged; in all cases, the standard deviation was
negligible. We ran these tests with gcc 4.0.3 and with Deputy. The
“Exec. Time Ratio” column of Table 1 shows the execution time
of each program when using Deputy relative to the execution time
without Deputy.

The slowdown exhibited by these benchmarks was within 25%
in at least half of the tests, with 98% overhead in the worst case.
With the sole exception of yacr2, Deputy’s performance improves
on the performance reported for CCured on the SPEC, Olden, and
Ptrdist benchmarks [21]. However, CCured is checking stack over-
flow and running a garbage collector, whereas Deputy is not. Nev-
ertheless, these numbers show that Deputy’s run-time checks have
a relatively low performance penalty that is competitive with other
memory safety tools. These numbers also indicate that splitting the
type checker from the optimizer is a viable implementation for a
hybrid type system.

In two cases, treeadd and perimeter, the Deputy version ran
faster than the original version. For treeadd, the reason is that
Deputy’s optimizer improves the original code beyond what gcc
would ordinarily do; if we disable our optimizer, this test yields
a ratio of 1.29. For perimeter, disabling the optimizer makes no
change; we believe that the speedup is a result of some of the simple
transformations made by our compiler infrastructure.

The TinyOS programs were compiled with nesC 1.2.7 and gcc
3.4.3 and ran on a mica2 mote, which has a 7.37MHz Atmel AT-
mega128 microcontroller. These programs are performing periodic
tasks, so performance is measured by counting the number of CPU
cycles used during one minute of program execution. These tests
were also run five times, with a standard deviation of at most 2% of
CPU usage. Deputy’s overhead was within 17% on all three tests.
Code size expansion, which is important for embedded systems
with limited code space, was below 16% on all TinyOS programs.

5.3 Bugs Found
During these tests Deputy found several bugs. A run-time failure
in a Deputy-inserted check exposed a bug in TinyOS’s radio stack
(some packets with invalid lengths were not being properly fil-
tered). In epic we found an array bounds violation and a call to
close that should have been a call to fclose.

We also caught several bugs that we were previously aware of:
ks has two type errors in arguments to fprintf, and go has six
array bounds violations.

6. Related Work
The first piece of related work is a companion paper in which we
describe SafeDrive [30], a system for safe and recoverable device
drivers for Linux. SafeDrive uses Deputy to enforce isolation of de-
vice drivers without resorting to hardware-based approaches, such
as Xen [3] and Nooks [26], or binary-instrumentation approaches,
such as SFI [27]. The SafeDrive paper contains a high-level de-
scription of Deputy from the C programmer’s perspective, essen-
tially at the level of the overview in Section 2. In contrast, this cur-
rent paper presents in detail the principles behind our type system,
including our techniques for handling mutation and automatic de-
pendencies. We also show the details of how this type system is
instantiated in the case of C programs with pointer arithmetic and
tagged unions. Aside from our references to SafeDrive’s Linux ex-
periments, the two papers discuss disjoint sets of experiments.

The remaining related work falls into several categories: depen-
dent types, hybrid type checking, type qualifiers, and safety for im-
perative programs.

Dependent types. DML [29] and Xanadu [28] are two previous
systems that used dependent types in functional and imperative lan-
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guages, respectively. Both systems add dependent types to existing
languages in a practical manner, refining existing type information.
Unlike Deputy, the expressions appearing in dependent types are
separate from program expressions themselves, and since these ex-
pressions are pure, these systems need not reason about dependen-
cies on mutable state. Also, these systems require that type check-
ing be decidable at compile time, further restricting the kinds of
dependencies that can be expressed. Our type system allows depen-
dencies on mutable state; in combination with hybrid type check-
ing, this approach allows us to describe more complex program
invariants using our dependent types.

Hoare Type Theory [20] combines dependent type theory and
Hoare logic in order to reason about dependently-typed imperative
programs. This approach uses a monadic type constructor based
on Hoare triples to isolate and reason about mutation. In contrast,
our type system assigns flow-insensitive types to each program
variable, using run-time checks and automatic dependencies to
address decidability and usability.

Cayenne [1] is a dependently-typed variant of Haskell. Al-
though its type system is undecidable, it offers very flexible depen-
dent types and does not separate index expressions from program
expressions as in DML and Xanadu. Deputy avoids the problem of
undecidability by emitting run-time checks; furthermore, it allows
updates to mutable state.

Harren and Necula [15] developed a dependent type system
for verifying the assembly-level output of CCured. Their system
allows dependencies on mutable data, but it requires programs to be
statically verifiable. In contrast, Deputy verifies programs at source
level and uses run-time checks to enforce dependencies.

Microsoft’s SAL annotation language [14] provides dependent
type annotations for C programs that are similar to the bounded
pointer annotations provided by Deputy. These annotations are
viewed as preconditions and postconditions as opposed to Deputy’s
simpler flow-insensitive types. Also, Deputy’s dependent type
framework makes it easy to add new dependent type construc-
tors to describe additional C idioms. Microsoft’s ESPX checker
attempts to check all code statically, whereas Deputy is designed to
emit run-time checks for additional flexibility.

Hybrid type checking. Hybrid type checking [10] and the Hoop
language [11] are similar to Deputy in that they both use run-time
checks to enforce type rules when static verification fails. However,
Deputy’s separation between the flow-insensitive type system and
the flow-sensitive optimizer represents a different approach to the
design of a hybrid type system. Also, Deputy offers automatic
dependency generation, and incorporates these features into the C
language, demonstrating their usefulness as a tool for retrofitting
existing C code.

Ou et al. [23] present a type system that splits a program into
portions that are either dependently or simply typed, using run-time
checks at the boundaries. Our type system uses run-time checks for
safety everywhere and relies on an optimizer to handle statically
verifiable cases. Ou et al. allow coercions between simply- and
dependently-typed mutable references at the cost of a complex run-
time representation for such references. In contrast, Deputy focuses
on handling mutation of local variables and structure fields in the
presence of dependencies.

Type qualifiers. CQual [12] allows programmers to add custom
qualifiers to C programs. Using simple inference rules, these qual-
ifiers can be propagated throughout the program in order to check
for common errors such as const violations and format string bugs.
More recently, Chin et al. presented semantic type qualifiers [6],
which can be used to extend a type system with qualifiers that can
be proved sound in isolation. Deputy’s dependent types provide

more expressive qualifiers; however, it is correspondingly more dif-
ficult to prove these extensions sound in isolation.

Safety for imperative programs. CCured [21] analyzes a whole
program in order to instrument pointers with checkable bounds
information. Unfortunately, this instrumentation makes “cured”
applications incompatible with existing libraries. Furthermore,
CCured’s analysis was designed to instrument a whole program
at once, rather than instrumenting one module at a time, incremen-
tally. Deputy’s approach, which does not change data structures
and which instruments one module at a time, is more practical for
large software systems.

Cyclone [17] is a type-safe variant of C that incorporates many
modern language features. Cyclone allows some dependent type
annotations; for example, the programmer can annotate a pointer
with the number of elements it points to. However, Deputy pro-
vides more general pointer bound support as well as support for
dependent union types.

Dhurjati and Adve [8] use run-time checks to enforce that C
programs access objects within their allocated bounds. Their sys-
tem has low overhead on a set of small to medium-size programs
but does not ensure full type safety.

7. Conclusion
In this paper, we have described a series of techniques that allow de-
pendent types to be incorporated into existing low-level imperative
programs. Because dependent types are a step towards the expres-
siveness of predicate logic, it makes sense to borrow the handling of
assignment from axiomatic semantics. The result is a type rule for
assignment that is simple yet powerful, allowing us to handle mu-
tation in the presence of dependent types. In addition, we address
the common pitfalls of aliasing with lightweight syntactic restric-
tions on dependencies for pointers. Finally, we have contributed a
technique for adding missing dependencies to existing programs.

Our experiments show that C programs contain a large number
of implicit dependencies that can now be expressed and checked
with Deputy. This approach allows pointer arithmetic and union
types to be used safely, without having to make significant changes
to existing programs or their data representation. We expect that
we will find many other common programming idioms whose
invariants can be enforced using the principles described here.
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A. Soundness Proof
In this section, we provide a sketch of the proof for Theorem 2. Due
to space constraints, we omit the proof for Theorem 1, which is a
straightforward induction on the derivation of the expression e. We
also omit the full definition of [[e]]ρ and [[c]]ρ, which are standard.

The first lemma we need is the following substitution lemma:

LEMMA 1 (Substitution).

[[e[ex�x]]]ρ = [[e]](ρE [x 7→ [[ex]]ρ], ρS , ρA)
[[τ [ex�x]]]ρ = [[τ ]](ρE [x 7→ [[ex]]ρ], ρS , ρA)

Our second lemma says that local types depend only on the
allocation state and the state of local variables, not on the store:

LEMMA 2. If Γ L̀ τ :: type, ρ |= Γ, and ρ′ differs from ρ only in
the ρS element, then [[τ ]]ρ = [[τ ]]ρ′.

Our third lemma says that closed local types depend only on the
allocation state:

LEMMA 3. If ∅ L̀ τ :: type and ρA is a restriction of ρ′A, then
[[τ ]]ρ ⊆ [[τ ]]ρ′.

Due to space constraints, we omit the proofs for these lemmas.
Care must be taken to re-prove these lemmas when additional type
constructors are added to the system.

Now we present a proof sketch for Theorem 2. The proof is by
induction on the derivation of Γ ` c ⇒ c′. We do a case split on the
command c; here, we show only the cases for variable and memory
update. The semantics of these commands are:

[[x := e]]ρ = (ρE [x 7→ [[e]]ρ], ρS , ρA)
[[∗e1 := e2]]ρ = (ρE , ρS [[[e1]]ρ 7→ [[e2]]ρ], ρA)

• Case 1: c is x := e

The last step in the derivation must be (VAR WRITE). Thus
c′ = assert(∧y∈Dom(Γ)γy); x := e. If the assertion fails, then
[[c′]]ρ = ρfail, and we’re done. Thus, for the remainder of this
argument, we assume that the guard condition holds in ρ and
that ρ′ = [[c]]ρ = (ρE [x 7→ [[e]]ρ], ρS , ρA). Since assignment
does not change the store or allocation state, we obtain from the
well-formedness of ρ′ and Lemma 3 the well-formedness of ρ.
Since ρ |= γy for all guard conditions γy , we can apply
Theorem 1 to the premises of the (VAR WRITE) rule. Thus for
all (y, τy) ∈ Γ, we have [[y[e�x]]]ρ ∈ [[τ [e�x]]]ρ, and thus by
Lemma 1 and the definition of ρ′, [[y]]ρ′ ∈ [[τy]]ρ′. Therefore
ρ′ |= Γ.

• Case 2: c is ∗ e1 := e2

The last step in the derivation must be (MEM WRITE). Thus
c′ = assert(γ1 ∧ γ2); ∗e1 := e2. If the assertion fails, then
[[c′]]ρ = ρfail, so we’re done. Thus, for the remainder of this
argument, we assume that γ1 ∧ γ2 holds and that ρ′ = [[c′]]ρ =
(ρE , ρS [[[e1]]ρ 7→ [[e2]]ρ], ρA).
We now show that ρ′ is well-formed. Let a = [[e1]]ρ. By ap-
plying Theorem 1 to the two premises of this rule, we get
a ∈ Dom(ρA) and [[e2]]ρ ∈ [[ρA(a)]]ρ. Using this result and
Lemma 3, we have ρ′S(a) = [[e2]]ρ ∈ [[ρA(a)]]ρ = [[ρ′A(a)]]ρ ⊆
[[ρ′A(a)]]ρ′. Then, using the fact that ρ is well-formed and
Lemma 3, we can make a similar argument for the other el-
ements of Dom(ρA). Thus ρ′ is well-formed.
To show that ρ′ |= Γ, we must show that for all x ∈ Dom(Γ),
[[x]]ρ′ ∈ [[Γ(x)]]ρ′. Using the fact that ρE = ρ′E and Lemma 2,
[[x]]ρ′ = [[x]]ρ ∈ [[Γ(x)]]ρ = [[Γ(x)]]ρ′.
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