
Dependent Types for Low-Level Programming

Jeremy Condit1, Matthew Harren1, Zachary Anderson1,
David Gay2, and George C. Necula1

1 University of California, Berkeley
2 Intel Research, Berkeley

Abstract. In this paper, we describe the key principles of a dependent
type system for low-level imperative languages. The major contributions
of this work are (1) a sound type system that combines dependent types
and mutation for variables and for heap-allocated structures in a more
flexible way than before and (2) a technique for automatically inferring
dependent types for local variables. We have applied these general prin-
ciples to design Deputy, a dependent type system for C that allows the
user to describe bounded pointers and tagged unions. Deputy has been
used to annotate and check a number of real-world C programs.

1 Introduction

Types provide a convenient and accessible mechanism for specifying program
invariants. Dependent types extend simple types with the ability to express
invariants relating multiple state elements. While such dependencies likely exist
in all programs, they play a fundamental role in low-level programming. The
following widespread low-level programming practices all involve dependencies:
an array represented as a count of elements along with a pointer to the start of
the buffer; a pointer to an element inside an array along with the array bounds;
and a variant type (as in a Pascal variant, or a C union) along with a tag that
identifies the active variant. If we cannot describe such dependencies we cannot
prove even the memory safety of most low-level programs.

In this paper, we consider the main obstacles that limit the convenient use
of dependent types in low-level programs:

– Soundness: Mutation of variables or heap locations, used heavily in low-level
programs, might invalidate the types of some state elements. Previous depen-
dent type systems are of limited usefulness because they contain restrictions
that preclude the use of mutable variables in dependent types [2, 19, 20]. In-
stead, we show that it is possible to combine mutation and dependencies
in a more flexible manner by using a type rule inspired by Hoare’s rule for
assignment. This approach can be used for dependencies between variables
and between fields of heap-allocated structures.

– Decidability: Dependent type checking involves reasoning about the run-time
values of expressions. In most previous dependent type systems, dependen-
cies are restricted to the point where all checking can be done statically.

Instead, we propose the use of run-time checks where static checking is not
sufficient. This hybrid type-checking strategy, which has also been used re-
cently by Flanagan [7], is essential for handling real-world code.

– Usability: Writing complete dependent type declarations can be a consider-
able burden. We describe a technique for automatic dependency inference
for local variables, starting from existing declarations for global variables,
data structures, and functions.

We have applied these general principles for low-level dependent types to
create the Deputy type system for the C programming language. Deputy’s de-
pendent types allow programmers to specify common C programming idioms
involving pointer arithmetic and union types. Previous approaches to safe C in-
volved significant changes in the program’s data representation in order to add
metadata for checking purposes: certain pointers were given a “fat” represen-
tation that includes the pointer and its bounds, and tags were added to union
values [11, 14]. Instead, Deputy allows programmers to specify relationships be-
tween existing data elements, which in turn allows the compiler to check the
safety of most pointer and union operations without changing program data
structures. This approach enables users to apply Deputy modularly and incre-
mentally to system components, which is especially important for very large
systems or in the presence of external libraries.

In Section 2, we present a high-level preview of the main stages in the Deputy
system for safe low-level programming, using a simple example. Section 3 con-
tains the technical core of the paper, describing our dependent types for a core
imperative language with references and structures, and Section 4 presents our
automatic dependency inference technique. Then, Section 5 shows how this de-
pendent type framework can be instantiated to provide safe handling of pointer
arithmetic and union types in C. Finally, we discuss related work in Section 6.

2 Overview

In order to provide an intuition for the general principles described in this paper,
we discuss here how these principles are instantiated for enforcing memory safety
with the Deputy type system. Consider the sample code shown in Figure 1
without any of the underlined or italicized statements. This program is standard
C, with one programmer-supplied annotation for the type of the buf formal
argument. The annotated type “int * count(end - buf)” describes a pointer
to an array of at least end - buf integers.

Deputy processes this program in three passes:

Pass 1: Inference of missing annotations. For each pointer type without bounds
annotations (e.g., tmp), Deputy introduces a fresh local variable to hold the
bounds, along with appropriate assignments for this variable whenever the pointer
is assigned. In Figure 1, this inference pass adds the underlined code; specifically,
it introduces the variable tmplen, which is updated to store the length of the
array pointed to by tmp. We describe this algorithm in Section 4.

1 int sum (int * count(end - buf) buf, int * end) {
2 int sum = 0;

3 while (buf < end) {
4 assert(0 < end - buf);

5 sum += * buf;

6 int tmplen = (end - buf) - 1;

7 assert(0 <= 1 <= end - buf);

8 int * count(tmplen) tmp = buf + 1;

9 assert(0 <= end - tmp <= tmplen);

10 buf = tmp;

11 }
12 return sum;

13 }

Fig. 1. A Deputy program, along with the code added during automatic dependency
inference (underlined) and the assertions added during type checking (in italics). The
temporary variable is shown to better demonstrate Deputy features but is not required.

Pass 2: Flow-insensitive type checking and instrumentation. Next, Deputy type
checks the program using a flow-insensitive type system. Any checks that involve
reasoning about run-time values of expressions are emitted as run-time asser-
tions. In Figure 1, the italicized code shows the assertions that have been added
in this stage. For example, the assertion in line 4 ensures that the buf array is
nonempty and can therefore be safely dereferenced.

The check on line 9 is particularly interesting because it shows the power of
Deputy’s handling of mutation in presence of dependent types. Previous depen-
dent type systems would disallow any assignments to buf because there exist
types in the program that depend on it. Instead, Deputy inserts checks that
ensure that buf’s type invariant will still hold after the assignment. Here, we
ensure that tmp has at least end - tmp elements and thus will satisfy buf’s type
invariant when assigned to buf. Such self-dependencies are particularly useful
when designing flexible types for low-level code. The rules for type checking and
for inserting run-time checks are described in Section 3.

Pass 3: Flow-sensitive optimization of checks. Because our flow-insensitive type
checker has limited ability to recognize redundant checks, we follow type checking
with a flow-sensitive optimization phase. Using standard data-flow techniques,
we can eliminate a large number of the unnecessary checks in the program,
and we can also identify checks that are guaranteed to fail. In Figure 1, all
checks could reasonably be eliminated by the optimizer. By separating the flow-
insensitive type checker from the flow-sensitive optimizer, we simplify both the
implementation and the programmer’s view of the type system. Our current op-
timizer uses standard data-flow techniques and is discussed in detail in a separate
technical report [1]. However, it is worth pointing out that the amount of static
memory safety enforcement depends directly on the quality of the optimizer.

We can use this example to contrast our approach with safe C type systems
that use fat pointers [11, 14]. With these systems, the pointer buf might be

Ctors C ::= int | ref | . . .
Types τ ::= C | τ1 τ2 | τ e
Kinds κ ::= type | type → κ | τ → κ
L-exprs ` ::= x | ∗ e
Exprs e ::= n | ` | e1 op e2

Cmds c ::= skip | c1; c2 |
` := e | assert(γ) |
let x : τ = e in c |
let x = new τ(e) in c

Preds γ ::= e1 comp e2 | true | γ1 ∧ γ2

x, y ∈ Variables n ∈ Integer constants
op ∈ Binary operators comp ∈ Comparison operators

Fig. 2. The grammar for a simple dependently-typed imperative language.

stored as a two-word pointer, which means that all callers of this function must
be instrumented as well. In contrast, Deputy’s annotations require no changes
outside this function, which is a crucial advantage over existing tools. Also, since
Deputy’s checks refer to existing program data, our optimizer can take advantage
of existing checks such as the conditional in line 3. These benefits have allowed us
to apply Deputy incrementally to modular software such as Linux device drivers
and TinyOS components, as described in Section 5.3.

3 Dependent Type Framework

This section presents the key components of our dependent type framework. Our
full type system supports dependencies between, and mutation of, local variables,
formal parameters, global variables, and structure fields. In this section, we start
with a system that includes only local variables, and then we extend it with heap-
allocated structures. The remaining features are not discussed in this paper, but
further details are available in a companion technical report [5].

3.1 Language

Although our implementation uses the concrete syntax of C, as shown in the
previous section, for the purposes of our formalism we use the simpler language
shown in Figure 2. In this language, types are specified using type constructors,
which represent type families indexed by types or by expressions. The built-in
constructors are the nullary type constructor “int” (a prototypical base type)
and the unary type constructor “ref”. The “ref” constructor allows the creation
of types such as “ref int”, which is an ML-style reference to an integer; this
reference type is introduced here so that we can show how our type system works
in the presence of memory reads and writes. In later sections, we will introduce
additional type constructors, such as more expressive pointer types. The built-in
constructors do not yield dependent types, but the additional constructors will.

Types are classified into kinds. The kind “type” characterizes complete types,
whereas the functional kinds characterize type families that have to be applied
to other complete types, or to expressions of a certain type, to eventually form
complete types. For the two constructors we have seen so far, the kind of “int”
is “type”, and the kind of “ref” is “type → type”.

To show how this system can be extended with additional type constructors,
consider the count annotation used in Figure 1. To represent this annotated
pointer type, we can introduce the constructor “array” with kind “type → int →
type”, such that “array τ elen” is the type of arrays of elements of type τ
and length at least elen . In the concrete syntax this type is written as “τ *
count(elen)”.

The remainder of this language is standard. Note that ∗ represents pointer
dereference, as in C. Also note that assertions are present only for compilation
purposes and do not appear in the input program. Finally, note that we omit
loops and conditionals, which are irrelevant to our flow-insensitive type system,
and we omit function calls, which can be added later as an extension [5].

3.2 Type Rules

In this section, we present the type rules for the core language. Figure 3 shows
these rules and summarizes the judgment forms involved.

Our strategy for handling mutation in the presence of dependent types relies
on two important components. First, we use a typing rule inspired by the Hoare
axiom for assignment to ensure that each mutation operation preserves well-
typedness of the state. Second, dependencies in types are restricted such that we
can always tell statically which types can be affected by each mutation operation.
For this purpose, we restrict types to contain only expressions formed using
constants, local variables, and arbitrary arithmetic operators. In other words, we
do not allow memory dereferences in types. We refer to these restricted notions
of expressions and types as local expressions and local types. Our type rules will
require that all types written by the programmer be local types. Note that when
we add structures to the language in the next section, we will extend this notion
to allow field types to refer to other fields of the same structure.3

We now consider the well-formedness rules for types, shown at the top of
Figure 3. If Γ is a mapping from variables to their types, we say that a type τ is
well-formed in Γ if τ depends only on the variables in Γ . Note that type argu-
ments must be well-formed in the empty environment, as shown in rule (type
type), whereas expression arguments must be well-typed in Γ , as shown in rule
(type exp). This conservative restriction is essential for the “ref” constructor.
If we allowed variables in Γ to appear in the base type of a reference, then we
would need perfect aliasing information to ensure that we can find all references
to a certain location when its type is invalidated through mutation.

We have two judgments for checking expressions: one for local expressions
and one for non-local expressions. The rules for local expressions are standard,
but the rules for non-local expressions produce a condition γ that must hold
in order for the judgment to be valid. This condition is generated during type
checking and will be emitted as a run-time check unless it is discharged statically
by the optimizer.

3 In the full version of Deputy for C, local expressions exclude function calls, references
to fields of other structures, and variables whose address is taken.

Γ L̀ τ :: κ In type environment Γ , τ is a local, well-formed type with kind κ.

(type ctor)

Γ L̀ C :: kind(C)

(type exp)

Γ L̀ τ :: (τ ′ → κ)
Γ L̀ e : τ ′

Γ L̀ τ e :: κ

(type type)

Γ L̀ τ1 :: (type → κ)
∅ L̀ τ2 :: type

Γ L̀ τ1 τ2 :: κ

Γ L̀ e : τ In type environment Γ , e is a local, well-typed expression with type τ .

(local name)

Γ (x) = τ

Γ L̀ x : τ

(local num)

Γ L̀ n : int

(local int arith)

Γ L̀ e1 : int
Γ L̀ e2 : int

Γ L̀ e1 op e2 : int

Γ ` e : τ ⇒ γ
In type environment Γ , e is a well-typed expression with type τ , if γ is
satisfied.

(var)

Γ (x) = τ

Γ ` x : τ ⇒ true

(num)

Γ ` n : int ⇒ true

(int arith)

Γ ` e1 : int ⇒ γ1

Γ ` e2 : int ⇒ γ2

Γ ` e1 op e2 : int ⇒ γ1 ∧ γ2

(deref)

Γ ` e : ref τ ⇒ γ

Γ ` ∗e : τ ⇒ γ

Γ ` c ⇒ c′
In type environment Γ , command c compiles to c′, where c′ is identical
to c except for added assertions.

(skip)

Γ ` skip ⇒ skip

(seq)

Γ ` c1 ⇒ c′1 Γ ` c2 ⇒ c′2

Γ ` c1; c2 ⇒ c′1; c
′
2

(var write)

x ∈ Dom(Γ)

for all (y : τy) ∈ Γ , Γ ` y[e�x] : τy[e�x] ⇒ γy

Γ ` x := e ⇒ assert(
V

y∈Dom(Γ)
γy); x := e

(mem write)

Γ ` e1 : ref τ ⇒ γ1 Γ ` e2 : τ ⇒ γ2

Γ ` ∗e1 := e2 ⇒ assert(γ1 ∧ γ2); ∗ e1 := e2

(let)

x /∈ Dom(Γ) Γ, x : τ L̀ τ :: type

Γ ` e : τ [e�x] ⇒ γ Γ, x : τ ` c ⇒ c′

Γ ` let x : τ = e in c ⇒ assert(γ); let x : τ = e in c′

(alloc)

x /∈ Dom(Γ) ∅ L̀ τ :: type
Γ ` e : τ ⇒ γ Γ, x : ref τ ` c ⇒ c′

Γ ` let x = new τ(e) in c ⇒ assert(γ); let x = new τ(e) in c′

Fig. 3. The four judgments used by our type system and the core type checking rules
for each. Additional rules (with nontrivial γ predicates) will be added later.

The rules presented in Figure 3 do not generate any interesting guard condi-
tions themselves. Our intent is that an instantiation of this type system will pro-
vide additional type constructors whose typing rules include non-trivial guards.
For example, to access arrays using the array constructor introduced earlier, we
might add new typing rules for pointer arithmetic and dereference:

(array deref)

Γ ` e : array τ elen ⇒ γe

Γ ` ∗e : τ ⇒ γe ∧ (0 < elen)

(array arith)

Γ ` e : array τ elen ⇒ γe Γ ` e′ : int ⇒ γe′

Γ ` e + e′ : array τ (elen − e′) ⇒ γe ∧ γe′ ∧ (0 ≤ e′ ≤ elen)

These rules are responsible for the assertions generated in line 4 and line 7 in
Figure 1. Note that we allow zero-length arrays to be constructed, but we check
for this case at dereference; this approach is useful in programs that construct
pointers to the end of an array, as allowed by ANSI C. We might also add a
coercion rule, allowing long arrays to be used where shorter arrays are expected:

(array coerce)

Γ ` e : array τ elen ⇒ γe Γ ` e′
len : int ⇒ γe′

len

Γ ` e : array τ e′
len ⇒ γe ∧ γe′

len
∧ (0 ≤ e′

len ≤ elen)

In our implementation, we ensure that type checking is syntax-directed by
invoking coercion rules only from the rules for commands.

The judgment for checking commands, written Γ ` c ⇒ c′, says that in
environment Γ , command c is compiled to command c′ by adding assertions with
the necessary guard conditions. These two commands have identical semantics
if no assertion in c′ fails.

The (var write) rule is responsible for updates to variables in the presence
of dependent types and is a key contribution of our type system. This rule says
that when updating a variable x with the value of expression e, we check all
variables y in the current environment to see that their types still hold after
substituting e for x. This rule essentially verifies that the assignment does not
break any dependencies in the current scope.

The intuition for this rule is based on the Hoare axiom for assignment, which
says that an assignment x := e preserves an invariant φ if and only if one can
prove that φ =⇒ φ[e�x]. If we view the type environment Γ as an invariant
predicate on the state of the program, the (var write) rule states that assign-
ments maintain the invariant. Section 3.4 makes this intuition more precise.

To understand this rule in more detail, consider the following code:

let n : int = . . . in
let a : array int n = . . . in
n := n− 1

In this example, decrementing n should be safe as long as n ≥ 1, because
if a is an array of length n, it is also an array of length n − 1. When we apply
the (var write) rule to this assignment, the premises are Γ ` n[n− 1�n] :
int[n− 1�n] ⇒ γn and Γ ` a[n− 1�n] : (array int n)[n− 1�n] ⇒ γa. The first
premise is trivial, with γn = true. The second premise is more interesting. After
substitution, it becomes Γ ` a : array int (n− 1) ⇒ γa. If we apply the (array
coerce) rule shown above, we can derive this judgment with γa = 0 ≤ n−1 ≤ n.
After static optimization, this check can be reduced to 0 ≤ n − 1, which is
precisely the check we expected.4

Generally speaking, the (var write) rule allows us to verify that dependen-
cies in the local environment have not been broken, and the local-type restriction
on base types of pointers ensures that there are no dependencies from the heap.
In short, a combination of the Hoare-inspired assignment rule and the local type
restriction have allowed us to verify mutation in the presence of dependent types.

The remainder of the rules for commands are largely straightforward. Note
that the (mem write) rule requires no reasoning about dependencies because
the well-formedness rule for reference types requires that the contents of a refer-
ence be independent of its environment. The (let) and (alloc) rules require a
substitution when checking e; however, since we are introducing a new variable,
we need not check the rest of the environment as in the (var write) rule.

3.3 Structures

We now extend our presentation to allow mutable C-like structures as a natural
extension of our dependent types for local variables. We allow field types to
depend on other fields of the same structure, which enables us to express common
idioms such as a structure containing a pointer to an array along with its length.

To add structures to our language, we add several new syntactic constructs.
We add the type “struct {f1 : τ1; . . . fn : τn}”, which defines a mutable
record type in which the ith field has label fi and type τi, and we add the l-
expression `.f , which accesses a field with name f . We also add the expression
{f1 = e1; . . . ; fn = en}, which is a structure literal that initializes field fi to
expression ei. For example, we could declare a structure with two fields such
that field f1 is an array whose length is one greater than the value in field f2:

y : struct {f1 : array int (f2 + 1); f2 : int}

Note that it is legal to apply the “ref” constructor to a structure type whose
fields depend on one another, because all of the structure type’s dependencies
are self-contained. Pointers to structures with internal dependencies are quite
common in C programs.

Figure 4 shows the rules for type checking structures. The (type struct)
rule ensures that field types depend only on other fields in the same structure.
The (struct read) rule substitutes these field names with the appropriate

4 We take care to account for possible overflow of machine arithmetic, which is simple
when reasoning about array indices that must be bound by the length of an array.

(type struct)

for all 1 ≤ i ≤ n, (f1 : τ1, . . . fn : τn) L̀ τi :: type

Γ L̀ struct {f1 : τ1; . . . fn : τn} :: type

(struct literal)

for all 1 ≤ i ≤ n, Γ ` ei : τi

h
ej�fj

i
1≤j≤n

⇒ γi γ =
V

1≤j≤nγi

Γ ` {f1 = e1; . . . ; fn = en} : struct {f1 : τ1; . . . fn : τn} ⇒ γ

(struct read)

Γ ` ` : struct {f1 : τ1; . . . fn : τn} ⇒ γ`

Γ ` `.fi : τi

h
`.fj�fj

i
1≤j≤n

⇒ γ`

(struct write)

Γ ` ` : struct {f1 : τ1; . . . fn : τn} ⇒ γ`

for all 1 ≤ j ≤ n, Γ ` ρ(fj) : ρ(τj) ⇒ γj

where ρ(e′) = e′
h
e�fi

, `.fj�fj

i
1≤j≤n,j 6=i

Γ ` `.fi := e ⇒ assert(γ` ∧
V

1≤j≤nγj); `.fi := e

Fig. 4. Structure type checking rules.

expressions; for example, using the declaration above, a read from y.f1 would
have type “array int (y.f2 + 1)”. The (struct write) rule is analogous to the
(var write) rule; when a field is changed, we check all of the other fields in the
current environment to make sure that any dependencies are satisfied.

In the technical report [5], we present a similar extension that allows us to
type check calls to functions whose arguments depend on one another.

3.4 Soundness

We have proved the soundness of the core type system of Section 3.2. We omit
the details of this proof for space reasons, but we present here the formal require-
ments on the framework for ensuring sound handling of mutation in presence of
dependent types. Full details can be found in the technical report [5].

We define the state of execution, ρ, to be a tuple containing, among other
things, a mapping ρA from addresses to types representing the allocation state.
We define [[e]]ρ to be the value v ∈ Val of expression e in state ρ.

An essential element of the formalization is that for each type τ we can define
the set of values of that type in state ρ as [[τ]]ρ, as follows:

[[int]]ρ = Val
[[ref]]ρ = λt.{a ∈ Dom(ρA)|t = [[ρA(a)]]ρ}

[[τ1 τ2]]ρ = ([[τ1]]ρ)([[τ2]]ρ)
[[τ e]]ρ = ([[τ]]ρ)([[e]]ρ)

In particular, each constructor C must have some meaning given by [[C]]ρ.
If additional constructors are added, the proof requires that their meanings be
given as well, and in some cases, these definitions may require an augmented

notion of state (e.g., a constructor characterizing lock state may require a history
of locking operations). The fact that types have state-based meanings allows us
to view the type environment as a predicate on the state of the program, which is
essential for the adequacy of using Hoare’s assignment axiom for type checking.

3.5 Limitations

One limitation of this type system is its flow-insensitivity. For example, incre-
menting an array before decrementing its length would result in an error even
though these two operations are safe when taken together. One way to overcome
this limitation is to use automatic dependencies to generate fresh dependencies
for local variables, as discussed in Section 4. Another alternative is to use an
extended (var write) rule that handles several statements at once.

A second limitation is the use of local expressions. Although many depen-
dencies can be annotated correctly using local expressions, there are a number
of dependencies that cannot be directly expressed in this way. In these cases, the
programmer must rewrite the code or mark it as trusted. We believe that such
rewrites are good practice even in the absence of a verifier such as Deputy.

4 Automatic Dependencies

Until now, we have presented our type checker under the assumption that all
dependent types were fully specified. To reduce the programmer burden, our type
system includes a feature called automatic dependencies, which automatically
adds missing dependencies of local variables. As described in Section 2, this
feature operates as a preprocessing step before type checking.

We allow local variables to omit expressions in their dependent types. For
example, a variable might be declared to have type “array int”, where the length
of the array is unspecified. For every missing expression in a dependent type of
a local variable, we introduce a new local variable that is updated along with
the original variable. For example, in Figure 1, we added tmplen to track the
length of tmp, updating it as appropriate.

Formally, we maintain a mapping ∆ from variables to the list of new variables
that were added to track their dependencies. If a variable x had a complete type
in the original program, ∆(x) is the empty list. We describe the automatic
dependency inference as a judgment Γ ;∆ ` c c′, which says that in the
context Γ ;∆, the command c can be transformed into command c′ such that all
types in c′ are complete and such that c′ computes the same result as c.

The interesting rules for deriving this judgment are given in Figure 5. In the
(auto let) rule, we add new variables to track any missing dependencies for
x. These variables are initialized using expressions from the type of e (by using
the type checking judgment). Note that γ is unused in this rule; however, it will
be checked appropriately during the type checking phase. In the (auto var
write) rule, we update all of the automatic variables associated with x using

(auto let)

Γ L̀ τ :: τ1 → . . . → τn → type Γ ` e : τ e1 . . . en ⇒ γ
τ ′ = τ x1 . . . xn x1, . . . , xn fresh

(Γ, x1 : τ1, . . . , xn : τn, x : τ); (∆, x 7→ (x1, . . . , xn)) ` c c′

Γ ; ∆ ` let x : τ = e in c
let x1 : τ1 = e1 in . . . let xn : τn = en in let x : τ ′ = e in c′

(auto var write)

Γ (x) = τ x1 . . . xn ∆(x) = (x1, . . . , xn)
Γ ` e : τ e1 . . . en ⇒ γ

Γ ; ∆ ` x := e x, x1, . . . , xn := e, e1, . . . , en

Fig. 5. Rules for automatic dependencies.

a similar approach. For the purposes of this rule, we add syntax for parallel as-
signment, written x1, . . . , xn := e1, . . . , en, where all expressions ei are evaluated
before assignments take place. The type checking rule for parallel assignment is
a straightforward extension of the (var write) rule. Note that this technique
is independent of the actual dependent types in use.

In the following example, the underlined code can be inferred using this
technique:

let a1 : array int n1 = . . . in
let a2 : array int n2 = . . . in
let nx : int = n1 in
let x : array int nx = a1 in
if (. . .) then x, nx := a2, n2;
∗(x + 3) := 0;

By using automatic dependencies, we ensure that nx contains the number of
elements in x regardless of which branch of the conditional was taken. Inferring
a similar result with a purely static analysis would be much more difficult. Note,
however, that in cases where static analysis would suffice, our optimizer can
eliminate variables and assignments that were introduced by this transformation.

This transformation recovers some of the flow-sensitivity that is absent in the
core type system. In many cases, it is difficult to annotate a variable with a single
dependent type that is valid throughout a function. By adding fresh variables
that are automatically updated with the appropriate values, we provide the
programmer with a form of flow-sensitive dependent type. As with the optimizer,
we have found that separating this feature from the core type system simplifies
both the implementation and the user’s view of the type system.

5 Dependent Types for C

We now show how our dependent type framework can be instantiated to support
pointer bounds and tagged unions in C programs. Further details can be found
in the SafeDrive paper [21] (see related work) and in the technical report [5].

5.1 Pointer Bounds

Our type constructor for bounded pointers is a generalization of the array con-
structor presented earlier. This new type, written “ptr τ lo hi”, represents a
possibly-null pointer to an array of elements of type τ , where lo and hi are ex-
pressions that indicate the bounds of this array. Specifically, lo is the address of
the first accessible element of the array, and hi is the address of the first inacces-
sible element after the end of the area. We also add to the language an operator
⊕ for C-style pointer arithmetic, which moves a pointer forwards or backwards
by a certain number of elements rather than bytes. The ⊕ operator may be used
in local expressions. Finally, we add typing rules for all relevant operations on
this type (e.g., dereference and arithmetic), the details of which can be found in
the technical report [5]. Examples of the ptr type are as follows:

x : ptr int b (b⊕ 8) // 8 integer area starting at b
x : ptr int x (x⊕ n) // n integer area starting at x
x : ptr int x e // from x to e

These declarations (with syntactic sugar for common cases) offer C program-
mers a tractable but expressive way to declare pointer bounds without modifying
existing data structures. Note that many of the uses of this type involve self-
dependencies, which are made tractable by our support for mutation.

5.2 Dependent Union Types

To ensure that C unions are used correctly, programmers often provide a “tag”
that indicates which union field is currently in use; however, the conventions for
how this tag is used vary from program to program. Our type system provides
dependent type annotations that allow the programmer to specify for each union
field the condition that must hold when that field is in use.

To introduce unions, we add a family of new type constructors called “unionn”,
where n indicates the number of fields in the union. This constructor takes n
type arguments indicating the types of each field of the union as well as n integer
arguments indicating whether the corresponding field of the union is currently
active. Thus, we write a union type as “unionn τ1 . . . τn e1 . . . en”, where τi

are the field types and ei are selector expressions. If selector ej is nonzero, then
the corresponding field with type τj is the active field of the union. As usual, the
selectors are local expressions, so they can depend on other values in the current
environment just as pointer bounds do. As with bounded pointers, we add type
rules for the relevant operations on this new type constructor. For example:

x : struct { tag : int; u : union2 int (ref int) (tag ≥ 2) (tag = 1) }

Here, we have a structure containing a union and its associated tag, which
is a common idiom found in C programs. The union x.u contains two fields: an
integer and a reference to an integer. The selector expressions indicate that the
union contains an integer when tag ≥ 2 and that it contains an integer reference
when tag = 1. Note that these selector expressions must be mutually exclusive.

5.3 Experiments

We implemented Deputy using the CIL infrastructure [15].5 Our implementation
is 18,000 lines of OCaml code in addition to the CIL front-end itself. Given an
annotated C program, our implementation adds automatic bounds variables,
type checks the program (which inserts run-time checks), optimizes the inserted
checks, and then emits the program as C code for compilation with gcc. The
flow-sensitive optimizer tracks facts such as which pointers are null, and it uses
forward substitution of locals plus basic arithmetic facts to eliminate inserted
checks and to detect checks that will always fail [1]. To use Deputy, programmers
run deputy in place of gcc as their compiler, and then they modify code or type
annotations in order to eliminate the resulting compile-time and run-time errors.

Our implementation covers most of C’s features, many of which are not dis-
cussed in this paper. However, we do not check inline assembly, some variable-
argument functions, and code explicitly marked as trusted by the programmer.
In addition, Deputy does not check memory deallocation, which is an orthogonal
problem; for now, the user can choose to trust deallocations or to run a garbage
collector. Aside from these caveats, Deputy ensures that the program is free of
type and memory errors, including bounds violations and misuse of unions.

To test Deputy, we annotated a number of standard benchmarks, including
Olden [4], Ptrdist [3], and selected tests from the SPEC CPU [18] and Medi-
aBench [12] suites. We also used Deputy to enforce type safety in version 2 of
the TinyOS [10] sensor network operating system, including three simple demo
applications: periodic LED blinking (Blink), forwarding radio packets to and
from a PC (BaseStation), and simple periodic data acquisition (Oscilloscope).
Finally, we have applied Deputy to a number of Linux device drivers for use with
the SafeDrive driver recovery system [21].

Results for these experiments are shown in Table 1. In all experiments, we
changed less than 11% of the lines of code in the program; in most cases, we
changed about 2-4%. We added a total of 27 trusted annotations that tell Deputy
to ignore bad code. The slowdown exhibited by these benchmarks was within
25% in at least half of the tests, with 98% overhead in the worst case. With
the sole exception of yacr2 (on the Ptrdist benchmarks), Deputy’s performance
improves on the performance reported for CCured on the SPEC, Olden, and
Ptrdist benchmarks [14]. However, CCured is checking stack overflow and uses
a garbage collector, whereas Deputy is not. Nevertheless, these numbers show
that Deputy’s run-time checks have a relatively low performance penalty that is
competitive with other memory safety tools. Further details can be found in the
accompanying technical report [5] and in the SafeDrive paper [21].

During these tests Deputy found several bugs. A run-time failure in a Deputy-
inserted check exposed a bug in TinyOS’s radio stack (some packets with invalid
lengths were not being properly filtered). In epic we found an array bounds
violation and a call to close that should have been a call to fclose. We also
caught several bugs that we were previously aware of: ks has two type errors in
arguments to fprintf, and go has six array bounds violations.
5 This implementation is available at http://deputy.cs.berkeley.edu/.

Table 1. Deputy benchmarks. For each test, we show the size of the benchmark includ-
ing comments, the number of lines we changed in order to use Deputy, and the ratio
of the execution time under Deputy to the original execution time. “OS components”
are the parts of TinyOS used by the three TinyOS programs.

Suite Benchmark Lines Lines Changed Exec. Time Ratio

SPEC go 29722 80 (0.3%) 1.11
gzip 8673 149 (1.7%) 1.23
li 9636 319 (3.3%) 1.50

Olden bh 1907 139 (7.3%) 1.21
bisort 684 24 (3.5%) 1.01
em3d 585 45 (7.7%) 1.56
health 717 15 (2.1%) 1.02
mst 606 66 (10.9%) 1.02
perimeter 395 3 (0.8%) 0.98
power 768 20 (2.6%) 1.00
treeadd 377 40 (10.6%) 0.94
tsp 565 4 (0.7%) 1.02

Ptrdist anagram 635 36 (5.7%) 1.40
bc 7395 191 (2.6%) 1.30
ft 1904 58 (3.0%) 1.03
ks 792 16 (2.0%) 1.10
yacr2 3976 181 (4.6%) 1.98

MediaBench I adpcm 387 15 (3.9%) 1.02
epic 3469 240 (6.9%) 1.79

TinyOS Blink 74 0 (0%) 1.04
BaseStation 282 0 (0%) 1.17
Oscilloscope 149 3 (2.0%) 1.13
OS components 11698 48 (0.4%) –

6 Related Work

SafeDrive. In a companion paper, we present SafeDrive [21], a system for safe
and recoverable Linux device drivers that uses Deputy to detect faults. The
SafeDrive paper contains a high-level description of Deputy from the C program-
mer’s perspective, whereas this paper presents in detail the principles behind our
type system, including our techniques for handling mutation and automatic de-
pendencies.

Dependent types. DML [20], Xanadu [19], and Cayenne [2] are previous lan-
guages that use dependent types. In DML and Xanadu, expressions appearing
in dependent types are different from program expressions and must be decid-
able at compile time. In Cayenne, arbitrary expressions from the same language
are allowed, and thus the type system may be undecidable. We attempt to find
a middle ground, allowing expressive annotations in the source language while
using run-time checks to keep the type checker simple and decidable. We also
allow mutation of expressions in dependent types, unlike these other systems.

Hoare Type Theory [13] uses a monadic type constructor based on Hoare
triples to isolate and reason about mutation in dependently-typed imperative

programs. In contrast, we assign flow-insensitive types to each program variable,
using run-time checks for decidability and automatic dependencies for usability.

Harren and Necula [9] developed a dependent type system for verifying the
assembly-level output of CCured. Their system allows dependencies on mutable
data, but it requires programs to be statically verifiable.

Microsoft’s SAL annotation language [8] provides interface annotations simi-
lar to those of Deputy. These annotations are viewed as preconditions and post-
conditions as opposed to Deputy’s simpler flow-insensitive types. Microsoft’s
ESPX checker attempts to check all code statically, whereas Deputy is designed
to emit run-time checks for additional flexibility.

Hybrid type checking. Our type system uses a form of hybrid type checking [7]
with a flow-insensitive type system and automatic dependency generation. We
demonstrate the effectiveness of this approach for low-level code.

Ou et al. [16] present a type system that splits a program into portions that
are either dependently or simply typed, using run-time checks at the bound-
aries. Our type system uses run-time checks for safety everywhere and relies on
an optimizer to handle statically verifiable cases. Ou et al. allow coercions be-
tween simply- and dependently-typed mutable references at the cost of a complex
run-time representation for such references. In contrast, we focus on handling
mutation of local variables and structure fields in the presence of dependencies.

Gradual typing [17] allows static and dynamic types to coexist using run-time
checks, but it does not use dependent types.

Safety for imperative programs. CCured [14] analyzes a whole program in order
to instrument pointers with checkable bounds information, and Cyclone [11] is a
type-safe variant of C that incorporates many modern language features. Both
use “fat” pointers, which make the resulting programs incompatible with existing
libraries; Deputy’s dependent types solve this crucial problem. Cyclone allows
some dependent type annotations; for example, the programmer can annotate a
pointer with the number of elements it points to. Deputy provides more general
pointer bound support as well as support for dependent union types.

Dhurjati and Adve [6] use run-time checks to ensure that C programs access
objects within their allocated bounds. Their system has low overhead on a set
of small to medium-size programs but does not ensure full type safety.

7 Conclusion

We have described a series of techniques that allow dependent types to be used in
existing low-level imperative programs. Inspired by the handling of assignment in
axiomatic semantics, we have designed a type rule for assignment that is simple
yet powerful, allowing us to handle mutation in the presence of dependent types.
We address decidability with run-time checks, and we address usability with a
technique for automatic dependency generation. The result is a practical type
system for annotating and checking low-level code.

Acknowledgments. Thanks to Feng Zhou, Ilya Bagrak, Bill McCloskey, Rob
Ennals, and Eric Brewer for their contributions. This material is based upon work
supported by the National Science Foundation under Grant Nos. CCR-0326577,
CCF-0524784, and CNS-0509544, as well as gifts from Intel Corporation.

References

1. Anderson, Z. R. Static analysis of C for hybrid type checking. Tech. Rep. EECS-
2007-1, UC Berkeley, 2007.

2. Augustsson, L. Cayenne—a language with dependent types. In ICFP’98.
3. Austin, T. M., Breach, S. E., and Sohi, G. S. Efficient detection of all pointer

and array access errors. In PLDI’94.
4. Carlisle, M. C. Olden: Parallelizing Programs with Dynamic Data Structures on

Distributed-Memory Machines. PhD thesis, Princeton University, June 1996.
5. Condit, J., Harren, M., Anderson, Z., Gay, D., and Necula, G. Dependent

types for low-level programming. Tech. Rep. EECS-2006-129, UC Berkeley, 2006.
6. Dhurjati, D., and Adve, V. Backwards-compatible array bounds checking for

C with very low overhead. In ICSE’06.
7. Flanagan, C. Hybrid type checking. In POPL’06.
8. Hackett, B., Das, M., Wang, D., and Yang, Z. Modular checking for buffer

overflows in the large. In ICSE’06.
9. Harren, M., and Necula, G. C. Using dependent types to certify the safety of

assembly code. In SAS’05.
10. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D. E., and Pister,

K. S. J. System architecture directions for networked sensors. In ASPLOS’00.
11. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., and Wang,

Y. Cyclone: A safe dialect of C. In USENIX Annual Technical Conference (2002).
12. Lee, C., Potkonjak, M., and Mangione-Smith, W. H. MediaBench: A tool

for evaluating and synthesizing multimedia and communicatons systems. In Inter-
national Symposium on Microarchitecture (1997).

13. Nanevski, A., and Morrisett, G. Dependent type theory of stateful higher-
order functions. Tech. Rep. TR-24-05, Harvard University.

14. Necula, G. C., Condit, J., Harren, M., McPeak, S., and Weimer, W.
CCured: Type-safe retrofitting of legacy software. TOPLAS 27, 3 (May 2005).

15. Necula, G. C., McPeak, S., and Weimer, W. CIL: Intermediate language and
tools for the analysis of C programs. In CC’02, Grenoble, France.

16. Ou, X., Tan, G., Mandelbaum, Y., and Walker, D. Dynamic typing with
dependent types. In IFIP Conference on Theoretical Computer Science (2004).

17. Siek, J. G., and Taha, W. Gradual typing for functional languages. In Scheme
and Functional Programming (2006).

18. SPEC. Standard Performance Evaluation Corporation Benchmarks.
http://www.spec.org/osg/cpu95/CINT95 (July 1995).

19. Xi, H. Imperative programming with dependent types. In LICS’00.
20. Xi, H., and Pfenning, F. Dependent types in practical programming. In

POPL’99.
21. Zhou, F., Condit, J., Anderson, Z., Bagrak, I., Ennals, R., Harren, M.,

Necula, G., and Brewer, E. SafeDrive: Safe and recoverable extensions using
language-based techniques. In OSDI’06.

